Redefining consciousness in order to solve the Big Question

Consciousness is an emergent property of evolution. Like all things that resulted from evolution, we can gather evidence to come up with theories and explanations.

We should avoid (or postpone) the problem of subjective experience (qualia); we should intentionally remove the question of personal experience and switch to scientifically observable evidence.

This idea was proposed by Stanislas Dehaene, in his book Consciousness and the Brain.

(image from http://www.brainfacts.org/neuroscience-in-society/supporting-research/2014/book-review-consciousness-and-the-brain)

A variation/interpretation of this idea is to redefine consciousness to be a property of living things or complex adaptive systems in general where certain common behaviors are exhibited. In the case of a wildcat hunting a rodent, with the implications of recognition, focus, attention, and other factors, we might be able to collect a set of markers of this kind of consciousness. There would not be a single marker, and we would not expect these markers to be consistent in all species, because consciousness could come in varying degrees, kinds, and loci.

In terms of degree, a snake probably has “less consciousness” than a fox. And a fox probably has “less consciousness” than a human. And all of these animals have “more consciousness” than a carrot.

But it may not be a matter of degree – perhaps it is more a matter of kind. (Is it possible to map raccoon-like consciousness to dolphin-like consciousness?)

Or it could be more a matter of locus (if there is anything like consciousness among ants – can it be found in a single ant’s brain? Or is it more likely to be distributed among a swarm of ants?)

Brain imaging has become a powerful tool for using evidence-based science to get at the problem.

(image from https://www.lesswrong.com/posts/x4n4jcoDP7xh5LWLq/book-summary-consciousness-and-the-brain)

There’s an old gem of wisdom: if a Big Question defies the Big Answer, you might need to change the Question. Consciousness may need to be unshackled from subjectivity in order to be redefined using scientific evidence. As a consequence, there may be new and better ways to understand subjective experience.

Our subjective experience causes us to resist the act of defining consciousness based on evidence, because subjective experience is precious and tied to the self, which wants to be immortal.

When the answer to the Big Question comes, it might have two possible effects: (1) It might be unsavory and counterintuitive – similar to the way quantum physics is counterintuitive – but nonetheless indisputable and scientifically verified; or (2) It might unleash an orchestra of language, mental tools, metaphors, and intuitions, forming a major advance in human knowledge and understanding – not unlike the theory of natural selection itself.

Advertisements

Thoughts on Biological Chemistry and Emergence

My dog was licking my face this morning – as he often does in the morning. Many people refuse to let dogs lick their faces. Understandable. I am one of the apparently few people who allow it. There are a few exceptions when I don’t like it, such as right after my dog has eaten stinky dog food. Otherwise, he is a very healthy, tidy and gentle (and smallish) dog. His breath is barely noticeable.

Dog’s lick people’s faces for a number of possible reasons; these are nicely explained in several articles, such as:

https://pets.thenest.com/dogs-lick-humans-faces-5892.html

https://shopus.furbo.com/blogs/knowledge/why-does-dog-lick-my-face

But the proposed reason that most intrigues me is that it is a form of chemical communication. Dogs have such a sophisticated sense of smell that they can actually gather information (dog-like information) about people they are licking. Licking can also have a calming effect on licker and lickee (if you are not a fan of dogs licking your face you may disagree, so just pretend that you’re a dog for a moment).

According to this article:

“Scientists believe that the major source of people’s positive reactions to pets comes from oxytocin, a hormone whose many functions include stimulating social bonding, relaxation and trust, and easing stress. Research has shown that when humans interact with dogsoxytocin levels increase in both species.”

Even more fascinating is a study that indicates that interacting with dogs can have health benefits for humans:

Beneficial Dog Bacteria Up-Regulate Oxytocin and Lower Risk of Obesity

So, having a dog can reduce obesity? That is certainly new to me!

Chemical Ecology

While my dog was licking my face and kicking up his oxytocin, and consequently making me release the same chemical into my bloodstream, I was thinking about how social animals regulate chemistry within their pack. (Similar with the visible/audible dimension: when my dog sends growling signals, I will sometimes get up and check out the window for intruders. He is modulating my behavior). So, I began to see more clearly how chemical exchange might be important for the cohesion of a group of social animals. I suspect there are many more chemicals involved in regulating the behaviors of pack animals – including humans.

And I realized that the orchestration of chemicals – not only in a single animal body – but among a group of animals – is largely invisible to us. But of course: chemicals are too small to see. They are molecules made of atoms. We experience their signaling effects as behaviors and notions. And we humans may have evolved such complex societal structures that we can hardly even recognize the chemical foundations of so much of our social behavior. This is the nature of emergence.

When a new level of emergence takes shape (for instance, when chemistry becomes complex enough to enable replication and variation and therefore genetic-based biology), new, larger structures take on their own agency and begin to regulate their sub-components in turn. Ancient chemistry didn’t just allow an apparatus to emerge that conveys information for replication (genetics); it also allowed a complex network of signaling between organelles, cells, organs, organisms, ecosystems, and societies. Each level gives rise (and gives way) to larger structures.

Emergence and Top-Down Effects

Emergence is a fascinating subject – not only because of the beauty of imagining simple components coming together to make a whole that is larger than the sum of its parts – but because that whole can attain autonomy; it can actually reach down and regulate those components that allowed it to come into existence in the first place. It’s possible that this top-down influence is an innate and necessary property of emergence.

If you are a fan of emergence, like me, you enjoy spinning narratives about how various levels of reality came into existence:

physics
chemistry
biology
intelligence
technology
super intelligence

The name of this blog is “Nature->Brain->Technology” – which is a nod to three of the levels in that list.

Dawkins’ book, The Selfish Gene – triggered new insights on genetics – and some lively debates. Dawkins coined the term “meme”. And I suspect he may have had a sense that the title of the book itself could turn into a meme. It brought forth ideas about how genes are powerful agents that cause an upward cascade of effects, making us do what we do: from the perspective of the selfish gene, we humans are “lumbering robots” whose purpose is to simply ensure its replication. Everything else is an illusion of human purpose. But it may be more subtle than this. Are genes the only things that are “selfish”? Could there be a lower level of selfishness going on?

My new insight from building oxytocin with my dog is that there is another layer of emergence involved, which is more fundamental to genes, and which gave rise to genes. My insight was echoed by an article called “Forget the selfish gene — the evolution of life is driven by the selfish ribosome“, which states:

“The selfish ribosome model closes a big theoretical gap between, on the one hand, the simple biological molecules that can form on mud flats, oceanic thermal vents or via lightning, and on the other hand LUCA, or the Last Universal Common Ancestor, a single-celled organism.”

Anything that smells of Eve is suspect. It’s more likely that there was a sort of distributed “Eve Soup” with a lot of pseudo-replication happening over a very long period of time. It is possible that the origin of life cannot be pinpointed to a single time and space…specifically because it is emergent.

Besides face-licking, there are probably many more phenomena that we have low-dimensional explanations for. They may someday be revealed as the effects of various selfish agents operating on various levels. Emergence is a scientific tool – a conceptual framework – that helps reveal otherwise invisible forces in nature.

For instance: why do we yawn?

The physiological purpose of a yawn remains a mystery. “The real answer so far is we don’t really know why we yawn,”

It may be more productive to stop looking for “the purpose”, and to look at it through the wide lens of emergence.

Music is Language. Language is Improvisation

(This article is re-published and re-edited from a previous version written on December 2004)

People are often amazed by musicians who play by ear, such as pianists who can just pick up melodies and play them on the spot, adding chords, accompanying singers who pause or change keys in mid-tune, inventing harmonies, etc.

I have found that sometimes the people who are the most amazed by improvisation are actually professional musicians who are classically trained – very accomplished musicians in fact – but they rarely engage in the art of improvisation. Many classically-trained concert pianists who can sight-read Bach and Bartok with astonishing skill do not improvise. To them, the magic of inventing musical expression on the spot is curious, impressive – even alien.

Vasily Kandinsky (1866–1944): Komposition 8 (Guggenheim)

As a person who was figuring out Beatles tunes on the guitar with my brother at age nine, improvisation has always been natural – synonymous with the very idea of music. I never had the patience as a young man to interpret a bunch of tiny black dots on a page. Only later in life did I actually learn to read – and even to this day, I have to mumble under my breath: “every…good…boy…does…fine” before I can produce a single note.

Music is About Ears, Not Eyes
I believe that improvising music is no different than speaking – it is in fact the most natural form of music creation. This is because we are a language species, and therefore, we are improvisers by nature. It just so happens that we practice improvisational speaking a lot more than we practice improvisational music.

Reading A Script To Your Husband or Wife
Imagine coming home from work and walking up to your spouse, opening up a booklet and beginning to recite from page 134, third paragraph: “Good evening dear, and how was your day?” That would be ludicrous. Obviously one does not need a script to talk. We are able to construct sentences on the fly, to fit the situation, to express the mood of the moment, and to respond to what the other person had just said. We are improvisational creatures – and our brains have evolved to allow us to do this very well. Every day of a person’s life, a unique sentence – a combination of words – is generated which that person has never said, and will never say again. And of course, that is just the words – those symbolic units that dance around in abstract space. There is much more to natural language than mere words, operating on deeper levels of brain and society. There is intonation, timing, punctuation, body language – essentially, the musical dynamics of speech.

While I am referring to the musicality of speech as the basis for advocating improvised music, I am not making a negative statement about classically-trained musicians who sight-read and do not improvise. I’m just suggesting to those who are amazed by improvisation that… this is where it all started. It’s not amazing at all! It is the origin of music itself.

Playing Back an Improvisation Preserved for Eternity
It would be totally wrong for me to say that musicians who sight read are not creative, or are not engaged in the spiritual level of music. Classically-trained musicians, as well as conductors, are the ones who have allowed us to enter into the minds and souls of Vivaldi, Beethoven, Stravinsky, Satie. And they are certainly more than just technicians who scan manuscripts as if they were records in a juke box. They are interpreters of the original emotion and meaning that was present when the musical piece was composed. Many a tear shed from the eye of a violinist is the same tear that Tchaikovsky shed when he created the original melody. And the fact is, neither you nor I could ever actually hear Tchaikovsky composing. Because he has been dead for a long time. His music is brought to life by living souls. And each interpreter brings his or her mood, individuality, culture, and the technology of the times – into the experience.

Chopin and Monk Interpreters
I recall hearing a radio program about Chopin’s music in which a musical critic referred to “Chopin interpreters”, classical pianists who specialize in expressing the essence of Chopin (at least as far as critics and historians could tell). I’ve even come across the term, “Chopinist”. This is also used in reference to contemporary jazz pianists who play Thelonius Monk – “Monk interpreters”, as well as musical scribes who preserve Monk’s recordings into notation. Any interpreter of a late jazz composer deals with an extra level of interpretation due to the fact that a large part of the composers art was improvisation – performances of the same musical piece were played differently for each recording. In the case of Monk, with his unique manner of weaving syncopated rhythm and harmony and using silent pauses of “thought”, there is an individual cosmology to be understood – one must enter into his mind to see this musical machinery at work.

The Universality of Communicating with Sound
The history of music is probably as old as the history of human speech itself. Like the earliest examples of “art” we know of, created on the walls of caves, music may have had a functional aspect. It may have been a way for humans to communicate to each other in a more ritualistic and transcendent way than the average grunting of daily life.

The world has many materials which the human species has appropriated, all of which produce overtones when struck, plucked, or stroked. Some materials produce more coherent overtone spectra – in which the fundamental frequencies are easily heard: other materials produce complex overtone spectra, and serve a percussive purpose. These overtones are a part of the physical nature of our world, and they are echoed within the language-generating machinery of our brains. Why did dodecaphonic music not free music from the tyranny of harmony? Because the language of music is inherently hierarchical – and this is because of the way physical objects vibrate. And we are physical objects.

I believe that the logic of harmony emerged from two things:

1. physics
2. the need for humans to communicate.

Connect to Your Soul with Music
I would conclude that the joy of creating music is not for the privileged few who have gone through the rigor of seven years at the Conservatory. Music is the underlying sound of our speech. It happens all the time – every day of our lives. To improvise with sound is natural, whether it takes the form of beating rhythms on your knee or cooing to a newborn baby. It is also a way for us to connect to the harmonic logic that resides in the molecular structure of the world. And it’s a way for us to connect to each other with the sounds that lie beneath mere words.

Deconstructing Agnosticism

 

Take a random phrase from the left column, a random phrase from the middle column, and a random phrase from the right column. Combine them to construct a question about your belief in God. How many possible questions can you construct?

The answer is 1080. That doesn’t include the many many possible phrases you might want to include in this list. This illustrates the expansiveness of questioning everything. Since “God” is difficult to define, and since there are many ways to represent, understand, and experience God, one can’t truly answer the question “do you believe in God” unless the asker and answerer both share the same sense of what they are talking about

One conclusion from this exploration is that we cannot escape the realm of words and language in the effort to articulate the nature of our beliefs. Can any one think about belief without using some form of (internal or external) language? 

Is belief naturally binary (I do believe vs. I don’t believe)? If it is not binary, can it be called a “belief”? Cultural/social forces and neural structures may cause a predisposition towards binarism in beliefs. In any case, I suspect that it is good to subdue these tendencies, for matters of intelligence as well as for social ease.

In my opinion (which could always change), agnosticism is (1) a good way to exercise one’s own intellectual agility, and (2) socially productive; it helps you hear and accept other people’s many kinds of beliefs, non-beliefs, assumed beliefs and believed assumptions.

True agnostics are not compelled to agree or disagree. In terms of epistemology, they are incapable of doing either.

No doubt, for many people, belief and faith are passionate and deeply-felt, and so it may not be easy to take such a dispassionate attitude. But as long as people are using language to question and express belief, the mechanics of logic necessarily come into play. 

In that case, the art of living may be the wordless expression that escapes the realm of agreement and disagreement.  Thus, God (or the absence of God) is best expressed in terms of how we live rather than what we say.

Very large numbers are not numbers: Infinity does not exist

(this blog post was originally published in https://eyemath.wordpress.com/ . It has been moved to this blog – with slight changes.)

Remember Nietzsche’s famous announcement, “God is dead“? In the domain of mathematics, Nietzsche’s announcement could just as well refer to infinity.

There are some philosophers who are putting up a major challenge to the Platonic stronghold on math: Brian Rotman, author of Ad Infinitum, is one of them. I am currently reading his book. I thought of waiting until I was finished with the book before writing this blog post, but I decided to go ahead and splurt out my thoughts.

————————

Charles Petzold gives a good review of Rotman’s book here.

Petzold says:

“We begin counting 1, 2, 3, and we can go on as long as we want.

That’s not true, of course. “We” simply cannot continue counting “as long as we want” because “We” (meaning “I” the author and “you” the reader) will someday die — probably in the middle of reciting a very long (but undoubtedly finite) number.

What the sentence really means is that some abstract ideal “somebody” can continue counting, but that’s not true either: Counting is a temporal process, and at some point everybody will be gone in a heat-dead universe. There will be no one left to count. Even long before that time, counting will be limited by the resources of the universe, which contains only a finite number of elementary particles and a finite amount of energy to increment from one integer to the next.”

Is Math a Human Activity or Eternal Truth?

Before continuing on to infinity (which is impossible of course), I want bring up a related topic that Rotman addresses: the nature of math itself. My thoughts at the moment are this:

You (reader) and I (writer) have brains that are almost identical as far as objects in the universe. We share common genes, language, and we are vehicles that carry human culture. We cannot think without language.  “Language speaks man” – Heidegger.

Since we have not encountered any aliens, it is not possible for us to have an alien’s brain planted into our skulls so that we can experience what “logic”, “reality” or “mathematical truth” feels like to that alien (yes, I used the word, “feel”). Indeed, that alien brain might harbor the same concept as our brains do that 2+2=4….but it might not. In fact, who is to say that the notion of “adding” means anything to the alien? Or the concepts of “equality”? And who is to say that the alien uses language by putting symbols together into a one-dimensional string?

More to the point: would that alien brain have the same concept of infinity as our brains?

It is quite possible that we can never know the answers to these questions because we cannot leave our brains, we can not escape the structure of our langage, which defines our process of thinking. We cannot see “our” math from outside the box. That is why we cannot believe in any other math.

So, to answer the question: “Is math a human activity or eternal truth?” – I don’t know. Neither do you. No one can know the answer, unless or until we encounter a non-human intelligence that either speaks an identical mathematical truth – or doesn’t.

Big Numbers are Patterns

My book, Divisor Drips and Square Root Waves, explores the notion of really large numbers as characterized by pattern rather than size (the size of the number referring to where it sits in the countable ordering of other numbers on the 1D number line). In this book, I explore the patterns of the neighborhoods of large numbers in terms of their divisors.

This is a decidedly visual/spatial attitude of number, whereby number-theoretical ideas emerge from the contemplation of the spatial patterning.

The number:

80658175170943878571660636856403766975289505440883277824000000000000

doesn’t seem to have much meaning. But when you consider that it is the number of ways in which you can arrange a single deck of cards, it suddenly has a short expression. In fact it can be expressed simply as 52 factorial, or “52!”.

So, by expressing this number with only three symbols: “5”, “2”, and “!”, we have a way to think about this really big-ass number in an elegant, meaningful way.

We are still a LONG way from infinity.

Now, one argument in favor of infinity goes like this: you can always add 1 to any number. So, you could add 1 to 52! making it 80658175170943878571660636856403766975289505440883277824000000000001.

Indeed, you can add 1 to the estimated number of atoms in the universe to generate the number 1080 + 1. But the countability of that number is still in question. Sure you can always add 1 to a number, but can you add enough 1’s to 1080 to each 10800?

Are we getting closer to infinity? No my dear. Long way to go.

Long way to “go”?  What does “go” mean?

Bigger numbers require more exponents (or whatever notational schemes are used to express bigness with few symbols – Rotman refers to hyper-exponents, and hyper-hyper-exponents, and further symbolic manipulations that become increasingly hard to think about or use).

These contraptions are looking less and less like everyday numbers. In building such contraptions in hopes to approach some vantage point to sniff infinity, one finds a dissipative effect – the landscape becomes ever more choppy.

No surprise: infinity is not a number.

Infinity is an idea. Really really big numbers – beyond Rotman’s “realizable” limit – are not countable or cognizable. The bigger the number, the less number-like it is. There’s no absolute cut-off point. There is just a gradual dissipation of realizability, countability, and utility.

Where Mathematics Comes From

Rotman suggests taking God out out mathematics and putting the body back in. The body (and the brain and mind that emerged from it) constitute the origins of math. While math requires abstractions, there can be no abstraction without some concrete embodiment that provides the origin of that abstraction. Math did not come from “out there”.

That is the challenge that some thinkers, such as Rotman, are proposing. People trained in mathematics, and especially people who do a lot of math, are guaranteed to have a hard time with this. Platonic truth is built in to their belief structure. The more math they do, the more they believe that mathematical truth is discovered, not generated.

I am sympathetic to this mindset. The more relationships that I find in mathematics, the harder it is to believe that I am just making it up. And for that reason, I personally have a softer version of this belief: Math did not emerge from human brains only. Human brains evolved in Earth’s biosphere – which is already an information-dense ecosystem, where the concept of number – and some fundamental primitive math concepts – had already emerged. This is explained in my article:

The Evolution of Mathematics on Planet Earth

I have some sympathy with Roger Penrose: when I explore the Mandelbrot Set, I have to ask myself, “who the hell made this thing!” Certainly no mathematician!

After all, the Mandelbrot Set has an infinite amount of fractal detail.

But then again, no human (or alien) will ever experience this infinity.

How much negentropy is Earth capable of?

Negentropy is the opposite of entropy. It refers to an increase in order, complexity, and usefulness, while entropy refers to the decay of order or the tendency for a system to become random and useless.

The universe as a whole tends toward total entropy, or heat death. This does not mean that ALL parts of the universe are becoming less ordered. There can be isolated parts of the universe that are actually increasing in order; becoming more organized and workable. The best example of this is our home: planet Earth.

A miracle of 7,000,000,000,000,000,000,000,000,000 atoms

I was walking from my bedroom to my bathroom this morning, pondering the miracle of my body purposefully moving itself from one place in the universe to another. Consider the atoms that make up my body; they are assembled in just the right way to construct a human capable of locomotion. It is a miracle. Of course, the atoms themselves are not the driving force of this capability. The driving force is a collaboration of emergent systems (molecules, tissues, electrochemical activity, signals between organs, and of course, a brain – which evolved in the context of a complex planet, with other brains in societies, and with an ever-complexifying backdrop of shared information.

It’s a curious thing: planet Earth – with its vast oceans, atmosphere, ecosystems and organisms – is determined to go against the overall tendency in the universe to decay towards the inevitable doom of heat death.

While walking the seven billion billion billion atoms of my body to the bathroom, I considered how far the negentropic urge of our planet could possibly push itself, in a universe that generally tries to ruin the party; a universe that will ultimately win in the end. The seven billion billion billion atoms currently in my body will eventually be strewn throughout a dead universe. At that point there will be nothing that can re-assemble them into anything useful.

How not to ruin a party

The party is not over; there is ample reason to believe that Earth is not done yet. Earth generated a biosphere – the only spherical ecosystem we know of – which produced animals and humans, and most recently – post-biological systems (technology and AI). I would not dismiss entirely the notion that Earth really wants us to invent AI, and to allow it to take over – because our AI could ultimately help Earth stay healthy, and continue its negentropic party. We humans (in our old, biological manifestation) are not capable of taking care of our own planet. We are only capable of exploiting its resources – left to our own primitive survival devices. It is only through our post-human systems that we will be able to give Earth the leverage it needs to continue its negentropic quest.

This is another way of saying that the solutions to climate change and mass extinction will require massive social movements, corporate and governmental leadership, global-scale technologies, and other trans-human-scale systems that far exceed the mental capacities of a single human brain. It is possible that the ultimate victory of AI will be to save ourselves from an angry Mother on the verge of committing infanticide.

In the meanwhile, Earth may decide that it needs to get rid of the majority of the human population; just another reason to reconsider the urge to make babies.

But just how far can Earth’s negentropic party extend? As Earth’s most potent agents of negentropy, we humans are preparing to tap the moon, asteroids, and other planets for resources. Will we eventually be able to develop energy shields to deflect renegade asteroids? Will our robots continue to colonize the solar system? How far will Earth’s panspermia extend?

There are plenty of science fiction stories and hypothetical explorations that offer exciting and illuminating possible answers to these questions; I will not attempt to venture beyond my level of knowledge in this area. All I will say is…I think there are two possible futures for us humans:

(1) Earth will decide it has had enough of climate change, and smack us down with rising oceans and chaotic storms, causing disease, mass migrations, and war, resulting in our ultimate demise (Earth will be fine after a brief recovery period).

(2) We will evolve a new layer of the biosphere – built of technology and AI – and this will regulate our destructive instincts, thus allowing Earth to stay healthy and to keep complexifying. It will allow Earth to reconsider what it currently sees as a cancer on its skin – and to see us as agents of health.

In the case of future (2), we will lose some of our autonomy – but it just might be a comfortable existence in the long run – because Earth will be better off – and it will want to keep us around. Eventually, the panspermic negentropic party will not be our own – we will be just one of the intermediate layers of emergence emanating from the planet. We will become mere organs of an extended post-Earth ecosystem that continues to defy the general entropy of the universe…at least for a few billion more years.

The feeling of consciousness is an illusion

Stanislaw Dehaene’s book, Consciousness and the Brain, identifies various kinds of consciousness. It helps to separate the various uses of the words “conscious” and “consciousness”. The kind of consciousness that he has studied and reported in his book has measurable effects. This allows the scientific method to be applied.

After reading Dehaene’s book, I am more convinced that science will eventually fully explain how we hold thoughts in our minds, how we recognize things, form ideas, remember things, process our thoughts, and act on them. To be conscious “of” something – whether it be the presence of a person, a thing, or a fleeting thought – is a form of consciousness that can have a particular signature – physiological markers that demonstrate a telltale change in the brain that coincide with a person reporting on becoming aware of something.

Brain imaging will soon advance to such a degree that we will begin to see signatures of many kinds of thoughts and associate them with outward behaviors and expressions. It it also being used to show that some people who are in a vegetative state are actually aware of what is going on, even if they have no way to express this fact outwardly. So much will be explained. We are at a stage in brain research where consciousness is becoming recognized as a measurable physical phenomenon. It is making its way into the domain of experimental science. Does this mean that consciousness will soon no longer be a subject of philosophy?

Qualia

There is one kind of consciousness which we may never be able to directly measure. And that is the subjective feeling of being alive, of being “me”, and experiencing a self. It is entirely private. Daniel Dennett suggests that these subjective feelings, which are referred to as “qualia”, are ineffable: they cannot be communicated, or apprehended by any other means than one’s own direct experience.

This would imply that the deepest and most personal form of consciousness is something that we will never be able to fully understand; it is forever inaccessible to objective observation.

On the other hand, the fact that I can write these words and that you can (hopefully) understand them means that we probably have similar sensations in terms of private consciousness. The vast literature on personal consciousness experience implies a shared experience. But of course it is shared: human brains are very similar to each other (my brain is more similar to your brain than it is to a galaxy, or a tree, or the brain of a chicken or the brain of a chimp). The aggregate of all reports of this inaccessible subjective state constitutes a kind of objective truth – indirect and fuzzy, sure – but nonetheless a source for scientific study.

So I’d like to offer a possible scenario that could unfold over the next several decades. What if brain scientists continue to map out more and more states of mind, gathering more accurate and precise signatures of conscious thoughts. As more scientific data and theories accumulate to explain the measurable effects of consciousness in the brain, we may begin to relegate the most private inexpressible aspects of qualia to an increasingly-smaller status. Neuroscience will enable more precise language to describe subtle private experiences that we have all experienced but may not have had a clear way to express. Science will nibble away at the edges.

An evolved illusion

And here’s an idea that I find hard to internalize, but am beginning to believe:

It’s all an illusion.

…because self is an illusion; a theatre concocted by the evolving brain to help animals become more effective at surviving in the world; to improve their ability to participate in biosemiosis. Throughout evolution, the boundary between an organism’s body and the rest of the world has complexified out of necessity as other organisms complexify themselves – this includes social structures and extended phenotypes. Also, the more autonomous the organisms of an evolving species become, the more self is needed to drive that autonomy.

The idea that we are living in an illusion is gaining ground, as explored in an article called: “The Evolutionary Argument Against Reality“.

Feelings are created by the body/brain as it interacts with the world, with thoughts generated in the brain, and with chemicals that ebb and flow in our bodies. The feeling of consciousness might be just that: a feeling – a sensation – like so many other sensations. Perhaps it was invented by the evolving brain to make it more of a personal matter. The problem is: being so personal is what makes it so difficult to relegate to the status of mere illusion.