Deconstructing Agnosticism

 

Take a random phrase from the left column, a random phrase from the middle column, and a random phrase from the right column. Combine them to construct a question about your belief in God. How many possible questions can you construct?

The answer is 1080. That doesn’t include the many many possible phrases you might want to include in this list. This illustrates the expansiveness of questioning everything. Since “God” is difficult to define, and since there are many ways to represent, understand, and experience God, one can’t truly answer the question “do you believe in God” unless the asker and answerer both share the same sense of what they are talking about

One conclusion from this exploration is that we cannot escape the realm of words and language in the effort to articulate the nature of our beliefs. Can any one think about belief without using some form of (internal or external) language? 

Is belief naturally binary (I do believe vs. I don’t believe)? If it is not binary, can it be called a “belief”? Cultural/social forces and neural structures may cause a predisposition towards binarism in beliefs. In any case, I suspect that it is good to subdue these tendencies, for matters of intelligence as well as for social ease.

In my opinion (which could always change), agnosticism is (1) a good way to exercise one’s own intellectual agility, and (2) socially productive; it helps you hear and accept other people’s many kinds of beliefs, non-beliefs, assumed beliefs and believed assumptions.

True agnostics are not compelled to agree or disagree. In terms of epistemology, they are incapable of doing either.

No doubt, for many people, belief and faith are passionate and deeply-felt, and so it may not be easy to take such a dispassionate attitude. But as long as people are using language to question and express belief, the mechanics of logic necessarily come into play. 

In that case, the art of living may be the wordless expression that escapes the realm of agreement and disagreement.  Thus, God (or the absence of God) is best expressed in terms of how we live rather than what we say.

Advertisement

Very large numbers are not numbers: Infinity does not exist

(this blog post was originally published in https://eyemath.wordpress.com/ . It has been moved to this blog – with slight changes.)

Remember Nietzsche’s famous announcement, “God is dead“? In the domain of mathematics, Nietzsche’s announcement could just as well refer to infinity.

There are some philosophers who are putting up a major challenge to the Platonic stronghold on math: Brian Rotman, author of Ad Infinitum, is one of them. I am currently reading his book. I thought of waiting until I was finished with the book before writing this blog post, but I decided to go ahead and splurt out my thoughts.

————————

Charles Petzold gives a good review of Rotman’s book here.

Petzold says:

“We begin counting 1, 2, 3, and we can go on as long as we want.

That’s not true, of course. “We” simply cannot continue counting “as long as we want” because “We” (meaning “I” the author and “you” the reader) will someday die — probably in the middle of reciting a very long (but undoubtedly finite) number.

What the sentence really means is that some abstract ideal “somebody” can continue counting, but that’s not true either: Counting is a temporal process, and at some point everybody will be gone in a heat-dead universe. There will be no one left to count. Even long before that time, counting will be limited by the resources of the universe, which contains only a finite number of elementary particles and a finite amount of energy to increment from one integer to the next.”

Is Math a Human Activity or Eternal Truth?

Before continuing on to infinity (which is impossible of course), I want bring up a related topic that Rotman addresses: the nature of math itself. My thoughts at the moment are this:

You (reader) and I (writer) have brains that are almost identical as far as objects in the universe. We share common genes, language, and we are vehicles that carry human culture. We cannot think without language.  “Language speaks man” – Heidegger.

Since we have not encountered any aliens, it is not possible for us to have an alien’s brain planted into our skulls so that we can experience what “logic”, “reality” or “mathematical truth” feels like to that alien (yes, I used the word, “feel”). Indeed, that alien brain might harbor the same concept as our brains do that 2+2=4….but it might not. In fact, who is to say that the notion of “adding” means anything to the alien? Or the concepts of “equality”? And who is to say that the alien uses language by putting symbols together into a one-dimensional string?

More to the point: would that alien brain have the same concept of infinity as our brains?

It is quite possible that we can never know the answers to these questions because we cannot leave our brains, we can not escape the structure of our langage, which defines our process of thinking. We cannot see “our” math from outside the box. That is why we cannot believe in any other math.

So, to answer the question: “Is math a human activity or eternal truth?” – I don’t know. Neither do you. No one can know the answer, unless or until we encounter a non-human intelligence that either speaks an identical mathematical truth – or doesn’t.

Big Numbers are Patterns

My book, Divisor Drips and Square Root Waves, explores the notion of really large numbers as characterized by pattern rather than size (the size of the number referring to where it sits in the countable ordering of other numbers on the 1D number line). In this book, I explore the patterns of the neighborhoods of large numbers in terms of their divisors.

This is a decidedly visual/spatial attitude of number, whereby number-theoretical ideas emerge from the contemplation of the spatial patterning.

The number:

80658175170943878571660636856403766975289505440883277824000000000000

doesn’t seem to have much meaning. But when you consider that it is the number of ways in which you can arrange a single deck of cards, it suddenly has a short expression. In fact it can be expressed simply as 52 factorial, or “52!”.

So, by expressing this number with only three symbols: “5”, “2”, and “!”, we have a way to think about this really big-ass number in an elegant, meaningful way.

We are still a LONG way from infinity.

Now, one argument in favor of infinity goes like this: you can always add 1 to any number. So, you could add 1 to 52! making it 80658175170943878571660636856403766975289505440883277824000000000001.

Indeed, you can add 1 to the estimated number of atoms in the universe to generate the number 1080 + 1. But the countability of that number is still in question. Sure you can always add 1 to a number, but can you add enough 1’s to 1080 to each 10800?

Are we getting closer to infinity? No my dear. Long way to go.

Long way to “go”?  What does “go” mean?

Bigger numbers require more exponents (or whatever notational schemes are used to express bigness with few symbols – Rotman refers to hyper-exponents, and hyper-hyper-exponents, and further symbolic manipulations that become increasingly hard to think about or use).

These contraptions are looking less and less like everyday numbers. In building such contraptions in hopes to approach some vantage point to sniff infinity, one finds a dissipative effect – the landscape becomes ever more choppy.

No surprise: infinity is not a number.

Infinity is an idea. Really really big numbers – beyond Rotman’s “realizable” limit – are not countable or cognizable. The bigger the number, the less number-like it is. There’s no absolute cut-off point. There is just a gradual dissipation of realizability, countability, and utility.

Where Mathematics Comes From

Rotman suggests taking God out out mathematics and putting the body back in. The body (and the brain and mind that emerged from it) constitute the origins of math. While math requires abstractions, there can be no abstraction without some concrete embodiment that provides the origin of that abstraction. Math did not come from “out there”.

That is the challenge that some thinkers, such as Rotman, are proposing. People trained in mathematics, and especially people who do a lot of math, are guaranteed to have a hard time with this. Platonic truth is built in to their belief structure. The more math they do, the more they believe that mathematical truth is discovered, not generated.

I am sympathetic to this mindset. The more relationships that I find in mathematics, the harder it is to believe that I am just making it up. And for that reason, I personally have a softer version of this belief: Math did not emerge from human brains only. Human brains evolved in Earth’s biosphere – which is already an information-dense ecosystem, where the concept of number – and some fundamental primitive math concepts – had already emerged. This is explained in my article:

The Evolution of Mathematics on Planet Earth

I have some sympathy with Roger Penrose: when I explore the Mandelbrot Set, I have to ask myself, “who the hell made this thing!” Certainly no mathematician!

After all, the Mandelbrot Set has an infinite amount of fractal detail.

But then again, no human (or alien) will ever experience this infinity.

How much negentropy is Earth capable of?

Negentropy is the opposite of entropy. It refers to an increase in order, complexity, and usefulness, while entropy refers to the decay of order or the tendency for a system to become random and useless.

The universe as a whole tends toward total entropy, or heat death. This does not mean that ALL parts of the universe are becoming less ordered. There can be isolated parts of the universe that are actually increasing in order; becoming more organized and workable. The best example of this is our home: planet Earth.

A miracle of 7,000,000,000,000,000,000,000,000,000 atoms

I was walking from my bedroom to my bathroom this morning, pondering the miracle of my body purposefully moving itself from one place in the universe to another. Consider the atoms that make up my body; they are assembled in just the right way to construct a human capable of locomotion. It is a miracle. Of course, the atoms themselves are not the driving force of this capability. The driving force is a collaboration of emergent systems (molecules, tissues, electrochemical activity, signals between organs, and of course, a brain – which evolved in the context of a complex planet, with other brains in societies, and with an ever-complexifying backdrop of shared information.

It’s a curious thing: planet Earth – with its vast oceans, atmosphere, ecosystems and organisms – is determined to go against the overall tendency in the universe to decay towards the inevitable doom of heat death.

While walking the seven billion billion billion atoms of my body to the bathroom, I considered how far the negentropic urge of our planet could possibly push itself, in a universe that generally tries to ruin the party; a universe that will ultimately win in the end. The seven billion billion billion atoms currently in my body will eventually be strewn throughout a dead universe. At that point there will be nothing that can re-assemble them into anything useful.

How not to ruin a party

The party is not over; there is ample reason to believe that Earth is not done yet. Earth generated a biosphere – the only spherical ecosystem we know of – which produced animals and humans, and most recently – post-biological systems (technology and AI). I would not dismiss entirely the notion that Earth really wants us to invent AI, and to allow it to take over – because our AI could ultimately help Earth stay healthy, and continue its negentropic party. We humans (in our old, biological manifestation) are not capable of taking care of our own planet. We are only capable of exploiting its resources – left to our own primitive survival devices. It is only through our post-human systems that we will be able to give Earth the leverage it needs to continue its negentropic quest.

This is another way of saying that the solutions to climate change and mass extinction will require massive social movements, corporate and governmental leadership, global-scale technologies, and other trans-human-scale systems that far exceed the mental capacities of a single human brain. It is possible that the ultimate victory of AI will be to save ourselves from an angry Mother on the verge of committing infanticide.

In the meanwhile, Earth may decide that it needs to get rid of the majority of the human population; just another reason to reconsider the urge to make babies.

But just how far can Earth’s negentropic party extend? As Earth’s most potent agents of negentropy, we humans are preparing to tap the moon, asteroids, and other planets for resources. Will we eventually be able to develop energy shields to deflect renegade asteroids? Will our robots continue to colonize the solar system? How far will Earth’s panspermia extend?

There are plenty of science fiction stories and hypothetical explorations that offer exciting and illuminating possible answers to these questions; I will not attempt to venture beyond my level of knowledge in this area. All I will say is…I think there are two possible futures for us humans:

(1) Earth will decide it has had enough of climate change, and smack us down with rising oceans and chaotic storms, causing disease, mass migrations, and war, resulting in our ultimate demise (Earth will be fine after a brief recovery period).

(2) We will evolve a new layer of the biosphere – built of technology and AI – and this will regulate our destructive instincts, thus allowing Earth to stay healthy and to keep complexifying. It will allow Earth to reconsider what it currently sees as a cancer on its skin – and to see us as agents of health.

In the case of future (2), we will lose some of our autonomy – but it just might be a comfortable existence in the long run – because Earth will be better off – and it will want to keep us around. Eventually, the panspermic negentropic party will not be our own – we will be just one of the intermediate layers of emergence emanating from the planet. We will become mere organs of an extended post-Earth ecosystem that continues to defy the general entropy of the universe…at least for a few billion more years.

Having sex with robots to save the planet

Long long ago, there was an accident in a warm puddle. A particular molecule – through some chance interaction with the soup of surrounding molecules – ended up with a copy of itself. Since the surrounding soup was similar to the original, the copy was more likely to replicate itself. And so it did. The rest is history. We call it evolution.

It is possible that similar accidents happened elsewhere around the same time – not just in one single puddle. One could also say that variations of this accident are still happening – only now at a massive scale.

Every act of every living thing can be seen as an elaboration of this original act. Self-replication is the original impetus of all life. We share a common ancestor with amoebas – who replicate asexually. The invention of sexual reproduction boosted genetic creativity. More recently in the scope of Earth’s history, creativity escaped the confines of genetics. We humans are the primary hosts of this creative engine.

Human beings have contrived all of the resulting aspects of survival to an art-form. This includes – not just the act of sex – but also the act of preparing food (cuisine), the act of making sounds and speaking (music and singing), and the act of altering the environment to create new structure (visual art). The abstractions and representations of the world that the brain generates via the body are derivations and deviations from the original acts of survival. It’s a form of self-replication.

The emergence of abstractions, mental models, and representations is increasing in complexity. This is an inevitable one-way blossoming accelerated by the emergence of the animal brain. The human experience is conflicted; we are oriented toward achieving escape velocity from Original Nature, but we also long for Original Nature. How can we resolve this conflict?

The original act of self-replication has powerful repercussions – billions of years after the original accident – it has taken on many forms. It is the reason we humans have strange phenomena like orgasm. And selfies.

Warming

We are at a crossroads in the history of life on Earth. The current era of global warming is almost certainly the result of the overpopulation and hyperactivity of humans, who have released – and continue to release – too much carbon into the atmosphere. One effective solution to global warming would be to reduce the primary agents of the fever…to reduce human population.

And so, converting that original act of replication into works of art is not just creative and exciting: it may be necessary. Humans must transcend the Earthly act of self-replication in order to preserve the health of the planet.

The future of sex will be…let’s just say…interesting. Every cell in our body contains the blueprint of a desire to replicate. Nature and society are structured around the elaborate machinery that has emerged to ensure self-replication – of human bodies and culture. This desire has made its mark on every aspect of society – even if we don’t recognize it as such. We cannot escape it. And so we need to virtualize it, because self-replication of human beings (physically) has become a threat to the planet that sustains us. It’s our duty to Mother Earth.

I am a living organism and so I have to contend with this crazy desire to replicate. Note: I am childless. I have never replicated my genes and have no intention to do so at this stage in my life. But I am passionate about replicating ideas, art, words, and software.

Now, what about the title of this blog post? Will people eventually start having sex with robots? It will certainly be more subtle than that. In fact, it has been said that by the time we get to that point, WE will be the robots.

Is this the kind of future I want? Strangely, yes. Because I will have long returned to the Earth – my molecules will have been handed down through generations of living things. I will be a part of Earth’s physiology. My tribe will be bigger than humanity.

One of my molecules may even end up in a warm puddle somewhere.

Thoughts on the Evolution of Communication

My dog and I engage in a lot of signaling. But it is not always deliberate, and it is not always conscious, and it is not always a two-way process.

In the morning, Otto licks my bald head. He can probably smell what I have been dreaming. I hold him and we have a nice cuddle. Just one of our many routines. He looks at me and I look at him. He is always checking me out. In the process of getting to know each other over several years we have come to read each other’s signals – our body language, interactions, responses, vocalizations…and smells.

image from http://projectdolittle.com/

Semiosis emerges in the process. If there is a coupling of signals – a mutually-reinforcing signaling loop – two-way communication emerges. It is not always conscious – for either of us. Sometimes, a mutually-reinforcing signaling process which I was previously unaware of becomes apparent to me. When this happens, I become an active agent in that semiosis.

Otto is so intensely attentive to me – my routines (and deviations from them). He probably tunes-in to many more of my signals than I do to his. But then again, I am a human: I generate a lot of signal. Does he see this as “communication?” It is not clear: his brain is a dog brain, and mine is a human brain. We don’t share the same word for this experience (he only knows a few English words, and “communication” isn’t one of them).

I can be sure of one thing: we share a lot of signaling. And, as members of two highly-social species, we both like that.

I would conclude from this that communication among organisms in general (the biosemiosis that has emerged on Earth over the last few billion years) came about pretty much the same way that Otto and I established our own little world of emergent semiosis. As life evolved, trillions of coupled signaling channels reinforced each other over time and became more elaborate. Eventually, this signaling became conscious and intentional.

And so here we are: human communication has reached a level of sophistication such that I can type these words – and you can read them. And we can share the experience – across time and space.

The Information EVOLUTION

I remember several decades ago learning that we were at the beginning of an information revolution. The idea, as I understood it, was that many things are moving towards a digital economy; even wars will become information-based.

The information revolution takes over where the industrial revolution left off.

I am seeing an even bigger picture emerging – it is consistent with the evolution of the universe and Earth’s biosphere.

Screen Shot 2016-06-16 at 10.20.47 AM

At the moment, I can hear a bird of prey (I think it’s a falcon) that comes around this neighborhood every year about this time and makes its call from the tree tops. When I think about the amount of effort that birds make to produce mating calls, and other kinds of communication, I am reminded of how much importance information plays in the biological world. The variety and vigor of bird song is amazing. From an evolutionary point of view, one has to assume that there is great selective pressure to create such energy in organized sound.

money+gorilla+teeth+omg+weird+primatesThis is just a speck of dust in comparison to the evolution of communication in our own species, for whom information is a major driver in our activities. Our faces have evolved to give and receive a very high bandwidth of information between each other (Compare the faces of primates to those of less complex animals and notice the degree to which the face is optimized for giving and receiving information).

Our brains have grown to massive proportions (relatively-speaking) to account for the role that information plays in the way our species survives on the planet.

Now: onto the future of information…

Beaming New Parts to the Space Station

Screen Shot 2016-06-16 at 10.29.58 AM

Guess which is more expensive:

  1. Sending a rocket to the space station with a new part to repair an old one.
  2. Beaming up the instructions to build the part on an on-board 3D printer.

You guessed it.

And this is where some people see society going in general. 3D printing will revolutionize society in a big way. Less moving atoms, More moving bits.

To what degree will the manipulation of bits become more important than the manipulation of atoms?

Not Just a Revolution: Evolution

My sense is that the information revolution is not merely one in a series of human eras: it is the overall trend of life on Earth. We humans are the agents of the latest push in this overall trend.

Some futurists predict that nanotechnology will make it possible to infuse information processing into materials, giving rise to programmable matter. Ray Kurzweil predicts that the deep nano-mingling of matter and information will be the basis for a super-intelligence that can spread throughout the universe.

Okay, whatever.

For now, let’s ride this information wave and try to use the weightlessness of bits to make life better for all people (and all life-forms) on Earth – not just a powerful few.

When Earth Discovered Water

When Earth discovered water, life became possible.

header-earth-from-space

“Discover”? I was going to use the word “invent”. Then I remembered that water can be found on other planets, comets, asteroids…and the Moon. Water is not unique to Earth. It may be more accurate to say that Earth invented a way to preserve and manage its water by evolving the biosphere. The biosphere harnesses, protects, filters, and enlivens the water that covers most of the planet.

Mars did not succeed in preserving its water.

The Gaia Hypothesis blows open the perspective of what life is. The evolution of the self-adaptive, self-regulating spherical ecosystem that we call Earth is more than just a collection of interacting organisms. It also relies on the dynamics of storms, oceans, tectonic plates, and the balance of gases in the atmosphere.

8

I began thinking about this as I was pouring boiling water into a coffee press. A beautiful stream, sparkling and transparent, visible only by virtue of the fact that it reflects the darks and lights of the surrounding environment.

What an amazing fluid. A true friend of gravity and heat, forming a collaboration resulting in a network of clouds, rain, snow, glaciers, streams, rivers and oceans.

There’s a deep reason why we can generate so much poetry about water.

“Planetary scientists are quick to stress that it’s not just water that’s indispensable for life, but liquid water. The distinction is key”

Water made life on Earth possible. Some people go as far as to say that water is alive.

Screen Shot 2016-05-16 at 12.32.00 PM

On the Origins of Earth’s Water

http://www.iflscience.com/physics/origin-earths-water-discovered-0

Did life on Earth begin with replicating molecules? Depends on how you define life. The backdrop for these replicating molecules was already rich and dynamic, with an interplay of water (in all its forms), gravity, atmospheric and ocean chemistry, electric storms…

…and the rhythms of day and night, winter and summer, which forms a backbeat. That backbeat drives the polyrhythmic dance that pulls water through its many forms – and brings us into being.

early-earth-moon-system-closeup

 

Thoughts on the Evolution of Evolvability

Evolve-Darwin-Fish-Car-Emblem-(2363)

It is early February. The other day, I observed some fresh buds on a tree. When I lived back east, I remember seeing buds on bare trees in the snowy dead of winter. I used to wonder if these trees are “preparing” for the first days of spring by starting the growth of their buds. Trees, like most plants, can adapt to variations of weather. All organisms, in fact, exhibit behaviors that appear resourceful, reactive, adaptive, even “intelligent”.

We sometimes talk about animals and plants in terms of their goals and intentions. We even use intentional language in relation to computers or mechanical machines. Even though we know a machine isn’t alive, we use this kind of language as a form of shorthand.

But there may be something more than just verbal shorthand going on here.

The Intentional Stance

Daniel Dennett proposed the concept of the Intentional Stance. When I first learned about this idea, I felt a new sense of how our own human intelligence is just a special case of the adaptive and goal-directed nature of all life on the planet.

When I saw those buds on the tree the other day, I realized that there is so much goal-directed behavior happening all over the place – in plants, animals, and even in ecological systems. Are humans any more adaptive or “intentional” than any other organism?

The Evolution of Self and the Intentional Stance

Could it be that our human brains have simply…

…wrapped a fully-evolved self around our intentions?

…that we are really no more goal-directed or intentional than any other organism…except that we reflect on it with a higher level of consciousness, and apply a fully-formed language to that intentionality?

The Evolution of Evolvability

I first learned of the evolution of evolvability from a paper by Richard Dawkins. It’s a powerful idea, and it helps to make evolution seem less magical and perhaps easier to imagine. Not only have organisms continued to evolve, but their ability to evolve has improved. An example is the evolution of sexual reproduction, which created a huge advantage in a species’ ability to exploit genetic variation over evolutionary time.

A recent article titled “Intelligent design without a creator? Why evolution may be smarter than we thought” makes reference to the Evolution of Evolvability. It helps to cast the notion of intelligence and learning as prolific and pervasive in the natural world.

It would appear that the ability to evolve better ways to evolve predates humans. (It might even predate biology).

Of course we humans have found even better ways to evolve – including ways that overtake or sidestep our own human biology. This constitutes a new era in the evolution of life on earth – an era in which technology, culture, and ideas (memes) become the primary evolving agents of our species (and possibly the whole planet – assuming we humans make the planet so sick that we have to fabricate artificial immune systems in order to keep the planet (and thus ourselves) healthy.

While many people will cast this Singularity-like idea in a negative light, I see it as a new protective organ that is forming around our planet. Biology is not going away. It is just one regime in a progression of many emergent regimes. Biology has given birth to the next regime (via Dennett’s crane), which then reaches down to regulate, modulate, and protect the regime which created it.

Evolvability is the higher-level emergent system over evolution. It is a higher-order derivative. When seen in this way, biology comes out looking like just one step in a long process.

(Thanks to Stephen Brown for editorial assistance)

Why Nick Bostrom is Wrong About the Dangers of Artificial Intelligence

emvideo-youtube-VmtrvkGXBn0.jpg.pagespeed.ce.PHMYbBBuGwNick Bostrom is a philosopher who is known for his work on the dangers of AI in the future. Many other notable people, including Stephen Hawking, Elon Musk, and Bill Gates, have commented on the existential threats posed by a future AI. This is an important subject to discuss, but I believe that there are many careless assumptions being made as far as what AI actually is, and what it will become.

Yea yea, there’s Terminator, Her, Ex Machinima, and so many other science fiction films that touch upon deep and relevant themes about our relationship with autonomous technology. Good stuff to think about (and entertaining). But AI is much more boring than what we see in the movies. AI can be found distributed in little bits and pieces in cars, mobile phones, social media sites, hospitals…just about anywhere that software can run and where people need some help making decisions or getting new ideas.

John McCarthy, who coined the term “Artificial Intelligence” in 1956, said something that is totally relevant today: “as soon as it works, no one calls it AI anymore.” Given how poorly-defined AI is – how the definition of it seems to morph so easily, it is curious how excited some people get about its existential dangers. Perhaps these people are afraid of AI precisely because they do not know what it is.

Screen Shot 2015-09-02 at 10.51.56 AMElon Musk, who warns us of the dangers of AI, was asked the following question by Walter Isaacson: “Do you think you maybe read too much science fiction?” To which Musk replied:

“Yes, that’s possible”….“Probably.”

Should We Be Terrified?

In an article with the very subtle title, “You Should Be Terrified of Superintelligent Machines“, Bostrom says this:

An AI whose sole final goal is to count the grains of sand on Boracay would care instrumentally about its own survival in order to accomplish this.”

godzilla-610x439Point taken. If we built an intelligent machine to do that, we might get what we asked for. Fifty years later we might be telling it, “we were just kidding! It was a joke. Hahahah. Please stop now. Please?” It will push us out of the way and keep counting…and it just might kill us if we try to stop it.

Part of Bostrom’s argument is that if we build machines to achieve goals in the future, then these machines will “want” to survive in order to achieve those goals.

“Want?”

Bostrom warns against anthropomorphizing AI. Amen! In a TED Talk, he even shows a picture of the typical scary AI robot – like so many that have been polluting the air waves of late. He discounts this as anthropomorphizing AI.

Screen Shot 2015-08-31 at 9.51.57 PM

And yet Bostrom frequently refers to what an AI “wants” to do, the AI’s “preferences”, “goals”, even “values”. How can anyone be certain that an AI can have what we call “values” in any way that we can recognize as such? In other words, are we able to talk about “values” in any other context than a human one?

Screen Shot 2015-09-01 at 3.49.13 PMFrom my experience in developing AI-related code for the past 20 years, I can say this with some confidence: it is senseless to talk about software having anything like “values”. By the time something vaguely resembling “value” emerges in AI-driven technology, humans will be so intertwingled with it that they will not be able to separate themselves from it.

It will not be easy – or possible – to distinguish our values from “its” values. In fact, it is quite possible that we won’t refer to it at “it”. “It” will be “us”.

Bostrom’s fear sounds like fear of the Other.

That Disembodied Thing Again

Let’s step out of the ivory tower for a moment. I want to know how that AI machine on Boracay is going to actually go about counting grains of sand.

Many people who talk about AI refer to many amazing physical feats that an AI would supposedly be able to accomplish. But they often leave out the part about “how” this is done. We cannot separate the AI (running software) from the physical machinery that has an effect on the world – any more than we can talk about what a brain can do that has been taken out one’s head and placed on a table.

Screen Shot 2015-08-31 at 9.56.50 PM

It can jiggle. That’s about it.

Once again, the Cartesian separation of mind and body rears its ugly head – as it were – and deludes people into thinking that they can talk about intelligence in the absence of a physical body. Intelligence doesn’t exist outside of its physical manifestation. Can’t happen. Never has happened. Never will happen.

Ray Kurzweil predicted that by 2023 a $1,000 laptop would have the computing power and storage capacity of a human brain. When put in these terms, it sounds quite plausible. But if you were to extrapolate that to make the assumption that a laptop in 2023 will be “intelligent” you would be making a mistake.

Many people who talk about AI make reference to computational speed and bandwidth. Kurzweil helped to popularize a trend for plotting computer performance along with with human intelligence, which perpetuates computationalism. Your brain doesn’t just run on electricity: synapse behavior is electrochemical. Your brain is soaking in chemicals provided by this thing called the bloodstream – and these chemicals have a lot to do with desire and value. And… surprise! Your body is soaking in these same chemicals.

Intelligence resides in the bodymind. Always has, always will.

So, when there’s lot of talk about AI and hardly any mention of the physical technology that actually does something, you should be skeptical.

Bostrom asks: when will we have achieved human-level machine intelligence? And he defines this as the ability “to perform almost any job at least as well as a human”.

I wonder if his list of jobs includes this:

Screen Shot 2015-09-02 at 12.45.02 AM

Intelligence is Multi-Multi-Multi-Dimensional

Bostrom plots a one-dimensional line which includes a mouse, a chimp, a stupid human, and a smart human. And he considers how AI is traveling along this line, and how it will fly past humans.

Screen Shot 2015-08-31 at 9.51.34 PM

Intelligence is not one dimensional. It’s already a bit of a simplification to plot mice and chimps on the same line – as if there were some single number that you could extract from each and compute which is greater.

Charles Darwin once said: “It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is most adaptable to change.”

Is a bat smarter than a mouse? Bats are blind (dumber?) but their sense of echolocation is miraculous (smarter?)

parrot

Is an autistic savant who can compose complicated algorithms but can’t hold a conversation smarter than a charismatic but dyslexic soccer coach who inspires kids to be their best? Intelligence is not one-dimensional, and this is ESPECIALLY true when comparing AI to humans. Plotting them both on a single one-dimensional line is not just an oversimplification. By plotting AI on the same line as human intelligence, Bostrom is committing anthropomorphism.

AI cannot be compared apples-to-apples to human intelligence because it emerges from human intelligence. Emergent phenomena by their nature operate on a different plane than what they emerge from.

WE HAVE ONLY OURSELVES TO FEAR BECAUSE WE ARE INSEPARABLE FROM OUR AI

We and our AI grow together, side by side. AI evolves with us, for us, in us. It will change us as much as we change it. This is the posthuman condition. You probably have a smart phone (you might even be reading this article on it). Can you imagine what life was like before the internet? For half of my life, there was no internet, and yet I can’t imagine not having the internet as a part of my brain. And I mean that literally. If you think this is far-reaching, just wait another 5 years. Our reliance on the internet, self-driving cars, automated this, automated that, will increase beyond our imaginations.

Posthumanism is pulling us into the future. That train has left the station.

african cell phoneBut…all these technologies that are so folded-in to our daily lives are primarily about enhancing our own abilities. They are not about becoming conscious or having “values”. For the most part, the AI that is growing around us is highly-distributed, and highly-integrated with our activities – OUR values.

I predict that Siri will not turn into a conscious being with morals, emotions, and selfish ambitions…although others are not quite so sure. Okay – I take it back; Siri might have a bit of a bias towards Apple, Inc. Ya think?

Giant Killer Robots

armyrobotThere is one important caveat to my argument. Even though I believe that the future of AI will not be characterized by a frightening army of robots with agendas, we could potentially face a real threat: if military robots that are ordered to kill and destroy – and use AI and sophisticated sensor fusion to outsmart their foes – were to get out of hand, then things could get ugly.

But with the exception of weapon-based AI that is housed in autonomous mobile robots, the future of AI will be mostly custodial, highly distributed, and integrated with our own lives; our clothes, houses, cars, and communications. We will not be able to separate it from ourselves – increasingly over time. We won’t see it as “other” – we might just see ourselves as having more abilities than we did before.

Those abilities could include a better capacity to kill each other, but also a better capacity to compose music, build sustainable cities, educate kids, and nurture the environment.

If my interpretation is correct, then Bolstrom’s alarm bells might be better aimed at ourselves. And in that case, what’s new? We have always had the capacity to create love and beauty … and death and destruction.

To quote David Byrne: “Same as it ever was”.

Maybe Our AI Will Evolve to Protect Us And the Planet

Here’s a more positive future to contemplate:

AI will not become more human-like – which is analogous to how the body of an animal does not look like the cells that it is made of.

tree-of-lifeBillions of years ago, single cells decided to come together in order to make bodies, so they could do more using teamwork. Some of these cells were probably worried about the bodies “taking over”. And oh did they! But, these bodies also did their little cells a favor: they kept them alive and provided them with nutrition. Win-win baby!

To conclude, I disagree with Bostrom: we should not be terrified.

Terror is counter-productive to human progress.

The Body Language of a Happy Lizard

lizardhappy-dog-running-by-500px-600x350I love watching my dog greet us when we come home after being out of the house for several hours. His body language displays a mix of running in circles, panting, bobbing his head up and down, wagging his tail vigorously, wagging his body vigorously, yapping, yipping, barking, doing the down-dog, shaking off, and finally, jumping into our laps. All of this activity is followed by a lot of of licking.

There was a time not long ago when people routinely asked, “do animals have intelligence?” and “do animals have emotions?” People who are still asking whether animals have intelligence and emotions seriously need to go to a doctor to get their mirror neurons polished. We realize now that these are useless, pointless questions.

Deconstructing Intelligence

self-cars-300x190The change of heart about animal intelligence is not just because of results from animal research: it’s also due to a softening of the definition of intelligence. People now discuss artificial intelligence at the dinner table. We often hear ourselves saying things like “your computer wants you to change the filename”, or “self-driving cars in the future will have to be very intelligent”.

The concept of intelligence is working its way into so many non-human realms, both technological and animal. We talk about the “intelligence of nature”, the “wisdom of crowds”, and other attributions of intelligence that reside in places other than individual human skulls.

imgres-1

Can a Lizard Actually Be “Happy”? 

I want to say a few things about emotions.

The problem with asking questions like “can a lizard be happy?” is in the dependency of words, like “happy”, “sad”, and jealous”. It is futile to try to fit a complex dynamic of brain chemistry, neural firing, and semiosis between interacting animals into a box with a label on it. Researchers doing work on animal and human emotion should avoid using words for emotions. Just the idea of trying to capture something as visceral, somatic, and, um…wordless as an emotion in a single word is counterproductive. Can you even claim that you are feeling one emotion at a time? No: emotions ebb and flow, they overlap, they are fluid – ephemeral. Like memory itself, as soon as you start to study your own emotions, they change.

And besides; words for emotions differ among languages. While English may be the official language of science, it does not mean that its words for emotions are more accurate.

Alas…since I’m using words to write this article (!) I have to eat my words. I guess I would have to give the following answer the question, “can a lizard be happy?”

Yes. Kind of.

The thing is: it’s not as easy to detect a happy lizard as it is to detect a happy dog. Let’s compare these animals:

HUMAN        DOG         COW           BIRD         LIZARD         WORM

This list is roughly ordered by how similar the animal is to humans in terms of intelligent body language. Dogs share a great deal of the body language that we associate with emotions. Dogs are especially good at expressing shame. (Do cats feel less shame than dogs? They don’t appear to show it as much as dogs, but we shouldn’t immediately jump to conclusions because we can’t see it in terms of familiar body language signals).

3009107.largeOn the surface, a cow may appear placid and relaxed…in that characteristic bovine way. But an experienced veterinarian or rancher can easily detect a stressed-out cow. As we move farther away from humans in this list of animals, the body language cues become harder and harder to detect. In the simpler animals, do we even know if these emotions exist at all? Again…that may be the wrong question to ask.

happy-worm

It would be wrong of me to assume that there are no emotional signals being generated by an insect, just because I can’t see them.

ants communicating via touch

Ant body language is just not something I am familiar with. The more foreign the animal, the more difficult it is for us humans to attribute “intelligence” or “emotion” to it.

Zoosemiotics may help to disambiguate these problematic definitions, and place the gaze where it may be more productive.

I would conclude that we need to continue to remove those anthropocentric biases that have gotten in the way of science throughout our history.

8212f1d8d4ab1d159c6e0837439524c3When we have adequately removed those biases regarding intelligence and emotion, we may more easily see the rich signaling that goes on between all animals on this planet. We will begin to see more clearly a kind of super-intelligence that permeates the biosphere. Our paltry words will step aside to reveal a bigger vista.

Dinosaur_615I have never taken LSD or ayahuasca, but I’ve heard from those that have that they have seen this super-intelligence. Perhaps these chemicals are one way of removing that bias, and taking a peek at that which binds us with all of nature.

But short of using chemicals….I guess some good unbiased science, an open mind, and a lot of compassion for our non-human friends can help us see farther – to see beyond our own body language.