When Earth Discovered Water

When Earth discovered water, life became possible.

header-earth-from-space

“Discover”? I was going to use the word “invent”. Then I remembered that water can be found on other planets, comets, asteroids…and the Moon. Water is not unique to Earth. It may be more accurate to say that Earth invented a way to preserve and manage its water by evolving the biosphere. The biosphere harnesses, protects, filters, and enlivens the water that covers most of the planet.

Mars did not succeed in preserving its water.

The Gaia Hypothesis blows open the perspective of what life is. The evolution of the self-adaptive, self-regulating spherical ecosystem that we call Earth is more than just a collection of interacting organisms. It also relies on the dynamics of storms, oceans, tectonic plates, and the balance of gases in the atmosphere.

8

I began thinking about this as I was pouring boiling water into a coffee press. A beautiful stream, sparkling and transparent, visible only by virtue of the fact that it reflects the darks and lights of the surrounding environment.

What an amazing fluid. A true friend of gravity and heat, forming a collaboration resulting in a network of clouds, rain, snow, glaciers, streams, rivers and oceans.

There’s a deep reason why we can generate so much poetry about water.

“Planetary scientists are quick to stress that it’s not just water that’s indispensable for life, but liquid water. The distinction is key”

Water made life on Earth possible. Some people go as far as to say that water is alive.

Screen Shot 2016-05-16 at 12.32.00 PM

On the Origins of Earth’s Water

http://www.iflscience.com/physics/origin-earths-water-discovered-0

Did life on Earth begin with replicating molecules? Depends on how you define life. The backdrop for these replicating molecules was already rich and dynamic, with an interplay of water (in all its forms), gravity, atmospheric and ocean chemistry, electric storms…

…and the rhythms of day and night, winter and summer, which forms a backbeat. That backbeat drives the polyrhythmic dance that pulls water through its many forms – and brings us into being.

early-earth-moon-system-closeup

 

The Body Language of a Happy Lizard

lizardhappy-dog-running-by-500px-600x350I love watching my dog greet us when we come home after being out of the house for several hours. His body language displays a mix of running in circles, panting, bobbing his head up and down, wagging his tail vigorously, wagging his body vigorously, yapping, yipping, barking, doing the down-dog, shaking off, and finally, jumping into our laps. All of this activity is followed by a lot of of licking.

There was a time not long ago when people routinely asked, “do animals have intelligence?” and “do animals have emotions?” People who are still asking whether animals have intelligence and emotions seriously need to go to a doctor to get their mirror neurons polished. We realize now that these are useless, pointless questions.

Deconstructing Intelligence

self-cars-300x190The change of heart about animal intelligence is not just because of results from animal research: it’s also due to a softening of the definition of intelligence. People now discuss artificial intelligence at the dinner table. We often hear ourselves saying things like “your computer wants you to change the filename”, or “self-driving cars in the future will have to be very intelligent”.

The concept of intelligence is working its way into so many non-human realms, both technological and animal. We talk about the “intelligence of nature”, the “wisdom of crowds”, and other attributions of intelligence that reside in places other than individual human skulls.

imgres-1

Can a Lizard Actually Be “Happy”? 

I want to say a few things about emotions.

The problem with asking questions like “can a lizard be happy?” is in the dependency of words, like “happy”, “sad”, and jealous”. It is futile to try to fit a complex dynamic of brain chemistry, neural firing, and semiosis between interacting animals into a box with a label on it. Researchers doing work on animal and human emotion should avoid using words for emotions. Just the idea of trying to capture something as visceral, somatic, and, um…wordless as an emotion in a single word is counterproductive. Can you even claim that you are feeling one emotion at a time? No: emotions ebb and flow, they overlap, they are fluid – ephemeral. Like memory itself, as soon as you start to study your own emotions, they change.

And besides; words for emotions differ among languages. While English may be the official language of science, it does not mean that its words for emotions are more accurate.

Alas…since I’m using words to write this article (!) I have to eat my words. I guess I would have to give the following answer the question, “can a lizard be happy?”

Yes. Kind of.

The thing is: it’s not as easy to detect a happy lizard as it is to detect a happy dog. Let’s compare these animals:

HUMAN        DOG         COW           BIRD         LIZARD         WORM

This list is roughly ordered by how similar the animal is to humans in terms of intelligent body language. Dogs share a great deal of the body language that we associate with emotions. Dogs are especially good at expressing shame. (Do cats feel less shame than dogs? They don’t appear to show it as much as dogs, but we shouldn’t immediately jump to conclusions because we can’t see it in terms of familiar body language signals).

3009107.largeOn the surface, a cow may appear placid and relaxed…in that characteristic bovine way. But an experienced veterinarian or rancher can easily detect a stressed-out cow. As we move farther away from humans in this list of animals, the body language cues become harder and harder to detect. In the simpler animals, do we even know if these emotions exist at all? Again…that may be the wrong question to ask.

happy-worm

It would be wrong of me to assume that there are no emotional signals being generated by an insect, just because I can’t see them.

ants communicating via touch

Ant body language is just not something I am familiar with. The more foreign the animal, the more difficult it is for us humans to attribute “intelligence” or “emotion” to it.

Zoosemiotics may help to disambiguate these problematic definitions, and place the gaze where it may be more productive.

I would conclude that we need to continue to remove those anthropocentric biases that have gotten in the way of science throughout our history.

8212f1d8d4ab1d159c6e0837439524c3When we have adequately removed those biases regarding intelligence and emotion, we may more easily see the rich signaling that goes on between all animals on this planet. We will begin to see more clearly a kind of super-intelligence that permeates the biosphere. Our paltry words will step aside to reveal a bigger vista.

Dinosaur_615I have never taken LSD or ayahuasca, but I’ve heard from those that have that they have seen this super-intelligence. Perhaps these chemicals are one way of removing that bias, and taking a peek at that which binds us with all of nature.

But short of using chemicals….I guess some good unbiased science, an open mind, and a lot of compassion for our non-human friends can help us see farther – to see beyond our own body language.

IS “ARTIFICIAL LIFE GAME” AN OXYMORON?

(This is a re-posting from Self Animated Systems)

langtonca

Artificial Life (Alife) began with a colorful collection of biologists, robot engineers, computer scientists, artists, and philosophers. It is a cross-disciplinary field, although many believe that biologists have gotten the upper-hand on the agendas of Alife. This highly-nuanced debate is alluded to in this article.

Games

What better way to get a feel for the magical phenomenon of life than through simulation games! (You might argue that spending time in nature is the best way to get a feel for life; I would suggest that a combination of time with nature and time with well-crafted simulations is a great way to get deep intuition. And I would also recommend reading great books like The Ancestor’s Tale :)

Simulation games can help build intuition on subjects like adaptation, evolution, symbiosis, inheritance, swarming behavior, food chains….the list goes on.

Screen Shot 2014-10-17 at 7.48.02 PMScreen Shot 2014-10-19 at 12.24.54 PMOn the more abstract end of the spectrum are simulation-like interactive experiences involving semi-autonomous visual stuff (or sound) that generates novelty. Kinetic art that you can touch, influence, and witness lifelike dynamics can be more than just aesthetic and intellectually stimulating.

These interactive experiences can also build intuition and insight about the underlying forces of nature that come together to oppose the direction of entropy (that ever-present tendency for things in the universe to decay).

Screen Shot 2014-10-17 at 7.58.33 PM

On the less-abstract end of the spectrum, we have virtual pets and avatars (a subject I discussed in a keynote at VISIGRAPP).

“Hierarchy Hinders” –  Lesson from Spore

Screen Shot 2014-10-17 at 8.18.59 PMWill Wright, the designer of Spore, is a celebrated simulation-style game designer who introduced many Alife concepts in the “Sim” series of games. Many of us worried that his epicSpore would encounter some challenges, considering that Maxis had been acquired by Electronic Arts. The Sims was quite successful, but Spore fell short of expectations. Turns out there is a huge difference between building a digital dollhouse game and building a game about evolving lifeforms.

Also, mega-game corporations have their share of social hierarchy, with well-paid executives at the top and sweat shop animators and code monkeys at the bottom. Hierarchy (of any kind) is generally not friendly to artificial life.

For blockbuster games, there are expectations of reliable, somewhat repeatable behavior, highly-crafted game levels, player challenges, scoring, etc. Managing expectations for artificial life-based games is problematic. It’s also hard to market a game which is essentially a bunch of game-mechanics rolled into one. Each sub-game features a different “level of emergence” (see the graph below for reference). Spore presents several slices of emergent reality, with significant gaps in-between. Spore may have also suffered partly due to overhyped marketing.

Artificial Life is naturally and inherently unpredictable. It is close cousins with chaos theory, fractals, emergence, and uh…life itself.

Emergence

alife graphAt the right is a graph I drew which shows how an Alife simulation (or any emergent system) creates novelty, creativity, adaptation, and emergent behavior. This emergence grows out of the base level inputs into the system. At the bottom are atoms, molecules, and bio-chemistry. Simulated protein-folding for discovering new drugs might be an example of a simulation that explores the space of possibilities and essentially pushes up to a higher level (protein-folding creates the 3-dimensional structure that makes complex life possible).

The middle level might represent some evolutionary simulation whereby new populations emerge that find a novel way to survive within a fitness landscape. On the higher level, we might place artificial intelligence, where basic rules of language, logic, perception, and internal modeling of the world might produce intelligent behavior.

In all cases, there is some level of emergence that takes the simulation to a higher level. The more emergence, the more the simulation is able to exhibit behaviors on the higher level. What is the best level of reality to create an artificial life game? And how much emergence is needed for it to be truly considered “artificial life”?

Out Of Control

Can a mega-corporation like Electronic Arts give birth to a truly open-ended artificial life game? Alife is all about emergence. An Alife engineer or artist expects the unexpected. Surprise equals success. And the more unexpected, the better. Surprise, emergent novelty, and the unexpected – these are not easy things to manage…or to build a brand around – at least not in the traditional way.

Screen Shot 2014-10-17 at 9.04.07 PMMaybe the best way to make an artificial life game is to spread the primordial soup out into the world, and allow “crowdsourced evolution” of emergent lifeforms.  OpenWorm comes to mind as a creative use of crowdsourcing.

What if we replaced traditional marketing with something that grows organically within the culture of users? What if, in addition to planting the seeds of evolvable creatures, we also planted the seeds of an emergent culture of users? This is not an unfamiliar kind problem to many internet startups.

Are you a fan of artificial life-based games? God games? Simulations for emergence? What is your opinion of Spore, and the Sims games that preceded it?

This is a subject that I have personally been interested in for my entire career. I think there are still unanswered questions. And I also think that there is a new genre of artificial game that is just waiting to be invented…

…or evolved in the wild.

Onward and Upward.

-Jeffrey

Software Development = Growing an Organism

In college I had a wonderful art teacher named Jewett Campbell. He was a modernist painter, and he taught us to see our paintings as visions that emerged from the canvas. At every step of the way, we were told that our paintings must always have a kind of architectural solidity – a compositional wholeness.

We were told to start a painting with the most important macro-features, and gradually fill-in the details, catching the basic overall scheme within the first few strokes. And we were taught to appreciate the techniques of post-impressionist Paul Cézanne.

Cezanne

Cézanne would often stop a painting, leaving large areas of the canvas empty. Apparently, he could stop working on a painting at any time, and the integrity of the composition would be solid; balanced. The composition would hold up. Leaving so much raw canvas was Cézanne’s way of inviting the viewer’s inner eye to fill-in the rest.

Little did I know after studying Cézanne that…decades later…I would see software development in the same way.

Meditate on the Organic Whole

Kidney transplantI don’t know about you, but as a developer, I really hate it when a software project gets pulled apart, with large components being rendered inoperable, while key parts are re-written. Would a surgeon kill a patient in order to do a kidney transplant?

Cézanne would never neglect one part of the canvas in order to obsess on another part. The big picture was always kept in his mind. Like a Cézanne painting, a body of software should be seen as a living being – a whole.

Now, let’s talk about chickens.

How is Cézanne Like a Chicken?

You see: a painting by Cézanne is like a an organism whose genes – whose full potential – is present from the very start.

Consider the way an embryo grows into an adult. The embryo of…say…a chicken, is a living thing; a moving, functioning, eating, breathing animal. At every stage of its growth, all of its genes are present. By the time it hatches from the egg, pretty much all of its internal organs exist in some rudimentary form.

egg

(BTW – the picture above is actually a penguin. I think it’s kinda cute, don’t you?)

Usually, when I start a new project, or work with a team to decide on how to get a project started from scratch, I try to get a sense of what the main components will be.

IMG_2313

Sometimes, a key component is sketched-in as a stub, like a splotch of gray-blue in a Cézanne painting that shows where an important cloud will be filled-in later. This cloud’s looming presence will set the mood and provide a compositional counter-weight to the mountain on the other side of the scene.

Oops – I forgot. We’re talking about chickens.

So, what if we considered the vital components of a software system to be the organs of an animal?

organs

Are there other people who like to use biological metaphors when talking about software development? You bet:

Biological Metaphors in the Design of Complex Software Systems

Structural biology metaphors applied to the design of a distributed object system

Biological Inspiration for Computing

Here’s a piece on the Organic Metaphor, where the author says, “Industry pundits have taken to calling the process of software design “system architecture.” They borrow, of course, from the ancient and time honored tradition of construction.”

Later, the author says, “My experience is that the best programs aren’t designed. They evolve.”

chicken-series

600px-FallingwaterWrightLike building architecture, the organic paradigm is the most resilient, most evolvable, most sustainable way to ensure growth and longevity in software systems.

……

Organism = “Organ” + “ism”

“Modules” in biology are described by [Raff, R. A. 1996] as having…

  1. discrete genetic specification
  2. hierarchical organization
  3. interactions with other modules
  4. a particular physical location within a developing organism
  5. the ability to undergo transformations on both developmental and evolutionary time scales

Let’s look at these five requirements in terms of software development:

1. discrete genetic specification:

I’m tempted to compare this to Design. However, software rarely begins with a known genetic code. Perhaps “the evolution of a new species” is a better metaphor than “the development of an individual”.

In other words: the genetic blueprint of a software organism is pretty much guaranteed to evolve. And programmers are better off letting that evolve through prototyping, design iteration, unit testing, and user-testing  – especially in the early stages of its life.  

2. hierarchical organization:

Classes, Encapsulation, Method-calling, Inheritance. OOP OOP a DOOP.

Earth’s Biosphere invented Object-Oriented Programming before we came along and gave it a name.

My liver performs certain functions, and those functions are different than the functions that my kidneys perform. My organs communicate with each other using arrays of biochemicals. 

3. interactions with other modules:

Data Flow, API’s, Interfaces

4. a particular physical location within a developing organism

This may only apply to visual code editing and file directory access. Software is made of bits, not atoms. We have to make it appear that it occupies space and time in order to bring it into existence. 

If the software gets deployed in a distributed physical environment (a spacecraft, a smart house, or among an internet of things), then physical location does indeed apply. In this case, we’re not just talking about software anymore.

5. the ability to undergo transformations on both developmental and evolutionary time scales

Amen Brother!

That last one is the punch line. Besides having a healthy birth, how do we design software to scale across the development cycle? How do we make it evolve organically as teams of programmers come and go, or even as companies and open-source communities merge and transform?

1

I think mother nature has many more clues.

EHimage3

By the way, you may prefer to think of a body of software as behaving more like an ecosystem than an individual organism. Although, I would suggest (being a fan of Gaia Theory) that ecosystems are really just super-organisms.

earth-at-night-north-pole

Software is the most versatile, plastic, and evolvable brainchild of Homo sapiens. It will probably not go away, and it may even outlast us. In fact, software could even eventually become a new living layer on Gaia. It might have to be put to use to monitor and manage the health of the planet (as well as continuing to help people find funny cat videos).

An era of autonomous, evolvable software is predicted by Hillis, Kelly, Koza, and many others. But fully sustainable software – as a new digital species – won’t come about for a long time. Software is in its adolescence. It is still in its growing pains.