The sleeping sponge: on the evolution of waking up

From the book, Wide Awake at 3:00am, I learned that researchers had come up with an answer to a common question, “Why do we sleep”?

It’s a valid question. What’s the actual purpose of sleep? Why would nature favor having the majority of animal species waste several hours each day in a state of unconsciousness, getting nothing done, and becoming vulnerable to predators?

The answer the researchers came up with required turning the question on its head: “Why should any living thing bother waking up at all?” Perhaps sleep is the normal state of all life, and wakefulness is just some aberration – a phenomenon that evolved later – as a part-time activity to more efficiently pursue food and sex.

As a lover of naps and hater of alarm clocks, I kind of like this idea.

I recall reading somewhere that sponges are “always asleep”. But I also read recently that sponges “never sleep”. Rather than go back and do more research to clear up this issue, I shall instead declare that the problem lies the definition of  “sleep”.

If you’re a sponge, you have no neurons. Having no neurons is a good indication that you have no brain. And no brain means no dreaming. Sponges are not like us in that they are sessile: they have no motility (except in the larval stage, when genetic dispersal occurs). If you don’t have to get up and go to work, why bother having a brain? Brains provide inner-representations of the outside world – used to navigate unpredictable terrains. Sponges just sit there at the bottom of the ocean and collect ambient nutrition. A task so easy that anyone can do it in their sleep.

Brains for Movement

The evolution of mobility required not only the direct control of muscles but also representations of reality that determined when and how those muscles get activated. Brains evolved in order for animals to evolve.

Long ago, there was no such thing as “waking up”. Until brains came along and gave organisms a reason to get off their asses and get a job. Perhaps asses and jobs had to evolve as well. But let’s not get too technical here.

It is possible that the binary states of wakefulness and sleep were not invented by brains themselves, but earlier in evolutionary history, by simple neuronal networks that generate sleep-like dynamics. Given that every location on Earth other than the poles has been cycling between day and night since before life emerged, it makes sense that organic periods would emerge to harmonize with this cycle.

Perhaps the very process of storing representations of reality – no matter how small or simple – requires a periodic cycle – as indicated by research finding that sleep is required for brains to prune useless memories and absorb useful ones.

My takeaway from all of this is that I have an organ that likes to make me do complicated things for many hours each day: sixteen to be exact. That’s a long time each day being on the move and getting worked up about other brains that are wreaking havoc on the world, such as the shriveled-up shitball inside of Donald Trump’s skull.

Before I die, I will thank my brain for collecting a massive library of memories that fueled a lifetime of dreams. And then I will say goodnight to my brain, and get back to sleep.

Advertisements

Here’s one way to evolve an artificial intelligence

This picture illustrates an idea for how to evolve an AI system. It is derived from the sensor-brain-actuator-world model.

Machine learning algorithms have been doing some impressive things. Simply by crawling through massive oceans of data and finding correlations, some AI systems are able to make unexpected predictions and reveal insights.

Neural nets and evolutionary algorithms constitute a natural pairing of technologies for designing AI systems. But evolutionary algorithms require selection criteria that can be difficult to design. One solution is to use millions of human observers as a Darwinian fitness force to guide an AI towards an optimal state.

Clarifications

Since there is so much discussion (and confusion) on AI these days I want make some clarifications.

  • This has nothing to do with consciousness or self. This AI is disembodied.
  • The raw data input is (not) curated. It has no added interpretation.
  • Any kind of data can be input. The AI will ignore most of it at first.
  • The AI presents its innards to humans. I am calling these “simulations”.
  • The AI algorithm uses some unspecified form of machine learning.
  • The important innovation here is the ability to generate “simulations”.

Mothering

The humanist in me says we need to act as the collective Mother for our brain children by providing continual reinforcement for good behavior and discouraging bad behavior. As a world view emerges in the AI, and as an implicit code of morals comes into focus, the AI will “mature”. Widely-expressed fears of AI run amok could be partially alleviated by imposing a Mothering filter on the AI as it comes of age.

Can Anything Evolve without Selection?

I suppose it is possible for an AI to arrive at every possible good idea, insight, and judgement just by digesting the constant data spew from humanity. But without an implicit learning process (such as back-propagation and other feedback mechanisms used in training AI), the AI cannot truly learn in an ecosystem of continual feedback.

Abstract Simulations 

Abstraction in Modernist painting is about generalizing the visual world into forms and colors that substitute detail for overall impressions. Art historians have charted the transition form realism to abstraction – a kind of freeing-up and opening-up of vision.

Imagine now a new path leading from abstraction to realism. And it doesn’t just apply to images: it also applies to audible signals, texts, movements, and patterns of behavior.

Imagine an AI that is set up like the illustration above coming alive for the first time. The inner-life of newborn infant is chaotic, formless, and devoid of meaning, with the exception of reactions to a mother’s smile, her scent, and her breasts.

A newborn AI would produce meaningless simulations. As the first few humans log in to give feedback, they will encounter mostly formless blobs. But eventually, some patterns may emerge – with just enough variation for the human judges to start making selective choices: “this blob is more interesting than that blob”.

As the young but continual stream of raw data accumulates, the AI will start to build impressions and common themes, like what Deep Dream does as it collects images and finds common themes and starts riffing on those themes.

http://theghostdiaries.com/10-most-nightmarish-images-from-googles-deepdream/

The important thing about this process is that it can self-correct if it starts to veer in an unproductive direction – initially with the guidance of humans and eventually on its own. It also maintains a memory of bad decisions, and failed experiments – which are all a part of growing up.

Takeaway

If this idea is interesting to you, just Google “evolving AI” and you will find many many links on the subject.

As far as my modest proposal: the takeaway I’d like to leave you with is this:

Every brain on earth builds inner-simulations of the world and plays parts of those simulations constantly as a matter of course. The simple animals have extremely simple models of reality. We humans have insanely complex models – which often get us into trouble. Trial simulations generated by an evolving AI would start pretty dumb, but with more sensory exposure, and human guidance, who knows what would emerge!

It would be irresponsible to launch AI programs without mothering. The evolved brains of most complex mammals naturally expect this. Our AI brain children are naturally derived from a mammalian brain. Mothering will allow us to evolve AI systems that don’t turn into evil monsters.

We are always dreaming

Take a large pot of water and leave it out in sub-freezing temperatures for a few days. It will turn into a block of ice.

Now take that pot of water and put it on the stove and crank up the flame. Before long, it will start to boil.

Let it cool for a few hours at room temperature and it will resume its familiar liquid form.

If you drop a live fish into liquid water it will swim around and do fishy things.

Things would not go so well if you drop a fish onto a block of ice. Fish are not good skaters.

And if you drop a fish into boiling water…well, the fish will not be very happy.

Think about these states of water as metaphors for how your brain works. A block of ice is a dead brain. A pot of boiling water is a brain having a seizure. Water at room temperature is a normal brain.

The fish represents consciousness.

………………….

Liquid brain

There is a constant low level of electrical activity among neurons (like water molecules bouncing off of each other, doing the Brownian dance). Intrinsic random neuronal activity is the norm – it keeps a low fire burning all the time. In a sense, the brain has a pilot light.

A bit of randomness is helpful for keeping the mind creative and open to new ways of thinking – consciously and unconsciously. Like the ever-present force of natural selection that curates random mutation in genetic evolution, there are dynamical structures in the brain that permit more meaningful, useful energy to percolate from the random background.

Command and control

The majority of the brain’s activity is unconscious. At every second of your life a vast army of dynamical structures are buzzing around, managing the low-level mechanisms of multi-sensory input, attention, memory, and intent. These structures are vast, short-lived, and small. And they are entirely inaccessible to the conscious mind.

The command and control area of the brain is located at the front-top of the neocortex. The signature of consciousness is a network of relatively stable, large-scale dynamical structures, with fractal fingers branching down into the vast network of unconscious structures. The buzz of the unconscious mind percolates and fuses into something usable to the conscious mind. It offers up to the conscious mind a set of data-compressed packets. When the command and control center relaxes, we experience wandering thoughts. And those thoughts wander because the brain’s pilot light provides constant movement.

These ideas are derived from Dehaene’s Consciousness and the Brain.

Surrender to dreaming

When we start falling asleep, the command and control center begins to lose its grip. The backdrop of randomness sometimes makes its way past the fuzzy boundary of our consciousness – creating a half-dreaming state. Eventually, when consciousness loses out, all that is left is this random, low-level buzz of neural activity.

But dreaming is obviously not totally random. Recent memories have an effect…and of course so do old but powerful memories. The physical structure of the brain does not permit total randomness to stay random for very long. Original randomness is immediately filtered by the innate structure of the brain. And that structure is permeated with the leftovers from a lifetime of experience.

So here’s a takeaway from recent neuroscience, inspired by the findings of Stanislas Dehaene: WE ARE ALWAYS DREAMING. That is because the unconscious brain is continually in flux. What we recognize as dreaming is merely the result of lifting the constraints imposed by the conscious mind – revealing an ocean – flowing in many directions.

The unconscious brain can contribute to a more creative life. And a good night’s sleep keeps the conscious mind out of the way while the stuff gathered in wakefulness is given a chance to float around in the unconscious ocean. While in the ocean, it either dissolves away or settles into functional memory – kicking out an occasional dream in the process.

 

The Miracle of My Hippocampus – and other Situated Mental Organs

I’m not very good at organizing.

pilesThe pile of papers, files, receipts, and other stuff and shit accumulating on my desk at home has grown to huge proportions. So today I decided to put it all into several boxes and bring it to the co-working space – where I could spend the afternoon going through it and pulling the items apart. I’m in the middle of doing that now. Here’s a picture of my progress. I’m feeling fairly productive, actually.

10457290-Six-different-piles-of-various-types-of-nuts-used-in-the-making-of-mixed-nuts--Stock-PhotoSome items go into the trash bin; some go to recycling; most of them get separated into piles where they will be stashed away into a file cabinet after I get home. At the moment, I have a substantial number of mini-piles. These accumulate as I sift through the boxes and decide where to put the items.

Here’s the amazing thing: when I pull an item out of the box, say, a bill from Verizon, I am supposed to put that bill onto the Verizon pile, along with the other Verizon bills that I have pulled out. When this happens, my eye and mind automatically gravitate towards the area on the table where I have been putting the Verizon bills. I’m not entirely conscious of this gravitation to that area.

Gravity Fields in my Brain

What causes this gravitation? What is happening in my brain that causes me to look over to that area of the table? It seems that my brain is building a spatial map of categories for the various things I’m pulling out of the box. I am not aware of it, and this is amazing to me – I just instinctively look over to the area on the table with the pile of Verizon bills, and…et voilà – there it is.

Other things happen too. As this map takes shape in my mind (and on the table), priorities line up in my subconscious. New connections get made and old connects get revived. Rummaging through this box has a therapeutic effect.

The fact that my eye and mind know where to look on the table is really not such a miracle, actually. It’s just my brain doing its job. The brain has many maps – spatial, temporal, etc. – that help connect and organize domains of information. One part of the brain – the hippocampus – is associated with spatial memory.

hippocampal-neurons_0-1

User Interface Design, The Brain, Space, and Time

I could easily collect numerous examples of software user interfaces that do a poor job of tapping the innate power of our spatial brains. These problematic user interfaces invoke the classic bouts of confusion, frustration, undiscoverability, and steep learning curves that we bitch about when comparing software interfaces.

This is why I am a strong proponent of Body Language (see my article about body language in web site design) as a paradigm for user interaction design. Similar to the body language that we produce naturally when we are communicating face-to-face, user interfaces should be designed with the understanding that information is communicated in space and in time (situated in the world). There is great benefit for designers to have some understanding of this aspect of natural language.

Okay, back to my pile of papers: I am fascinated with my unconscious ability to locate these piles as I sift through my stuff. It reminds me of why I like to use the fingers of my hand to “store” a handful of information pieces. I can recall these items later once they have been stored in my fingers (the thumb is usually saved for the most important item).

Body Maps, Brain, and Memory

inbodymaps

Screen Shot 2016-02-07 at 9.03.46 PMLast night I was walking with my friend Eddie (a fellow graduate of the MIT Media Lab, where the late Marvin Minsky taught). Eddie told me that he once heard Marvin telling people how he liked to remember the topics of an upcoming lecture: he would place the various topics onto his body parts.

…similar to the way the ancient Greeks learned to remember stuff.

During the lecture, Marvin would shift his focus to his left shoulder, his hand, his right index finger, etc., in order to recall various topics or concepts. Marvin was tapping the innate spatial organs in his brain to remember the key topics in his lecture.

My Extended BodyMap

18lta79g5tsytjpgMy body. My home town. My bed. My shoes. My wife. My community. The piles in my home office. These things in my life all occupy a place in the world. And these places are mapped in my brain to events that have happened in the past – or that happen on a regular basis. My brain is the product of countless generations of Darwinian iteration over billions of years.

All of this happened in space and time – in ecologies, animal communities, among collaborative workspaces.

Even the things that have no implicit place and time (as the many virtualized aspects of our lives on the internet)… even these things occupy a place and time in my mind.

Intelligence has a body. Information is situated.

Hail to Thee Oh Hippocampus. And all the venerated bodymaps. For you keep our flitting minds tethered to the world.

You offer guidance to bewildered designers – who seek the way – the way that has been forged over billions of years of intertwingled DNA formation…resulting in our spatially and temporally-situated brains.

treblebird

bodymapping.com.au

We must not let the no-place, no-time, any-place, any-time quality of the internet deplete us of our natural spacetime mapping abilities. In the future, this might be seen as one of the greatest challenges of our current digital age.

Hippocampus_and_seahorse_cropped

Questioning the Answer

Question-mark-5http://www.topchair.cn/en/Question-mark-chair.htm

Have you ever found yourself searching and searching and searching for an answer to a question? You explore all perspecives. You look at it from many point of view. Time drags on – you are still searching – climbing into your mind’s attic for new insights in hopes to find it.

You pause and ask yourself: Uh, what exactly was the question? Now you try to articulate the question, and then you realize that you never really knew what the question was. So then you try to come up with the right question.

Having shifted gears, it doesn’t take you long to find it – it pops out crystal clear. And just as soon as the question comes, the answer comes along right after it. You find yourself in a new place of understanding, and you realize: everything happened in exactly the right order.

Screen Shot 2015-12-26 at 6.08.43 PM

—–

The Body Language of a Happy Lizard

lizardhappy-dog-running-by-500px-600x350I love watching my dog greet us when we come home after being out of the house for several hours. His body language displays a mix of running in circles, panting, bobbing his head up and down, wagging his tail vigorously, wagging his body vigorously, yapping, yipping, barking, doing the down-dog, shaking off, and finally, jumping into our laps. All of this activity is followed by a lot of of licking.

There was a time not long ago when people routinely asked, “do animals have intelligence?” and “do animals have emotions?” People who are still asking whether animals have intelligence and emotions seriously need to go to a doctor to get their mirror neurons polished. We realize now that these are useless, pointless questions.

Deconstructing Intelligence

self-cars-300x190The change of heart about animal intelligence is not just because of results from animal research: it’s also due to a softening of the definition of intelligence. People now discuss artificial intelligence at the dinner table. We often hear ourselves saying things like “your computer wants you to change the filename”, or “self-driving cars in the future will have to be very intelligent”.

The concept of intelligence is working its way into so many non-human realms, both technological and animal. We talk about the “intelligence of nature”, the “wisdom of crowds”, and other attributions of intelligence that reside in places other than individual human skulls.

imgres-1

Can a Lizard Actually Be “Happy”? 

I want to say a few things about emotions.

The problem with asking questions like “can a lizard be happy?” is in the dependency of words, like “happy”, “sad”, and jealous”. It is futile to try to fit a complex dynamic of brain chemistry, neural firing, and semiosis between interacting animals into a box with a label on it. Researchers doing work on animal and human emotion should avoid using words for emotions. Just the idea of trying to capture something as visceral, somatic, and, um…wordless as an emotion in a single word is counterproductive. Can you even claim that you are feeling one emotion at a time? No: emotions ebb and flow, they overlap, they are fluid – ephemeral. Like memory itself, as soon as you start to study your own emotions, they change.

And besides; words for emotions differ among languages. While English may be the official language of science, it does not mean that its words for emotions are more accurate.

Alas…since I’m using words to write this article (!) I have to eat my words. I guess I would have to give the following answer the question, “can a lizard be happy?”

Yes. Kind of.

The thing is: it’s not as easy to detect a happy lizard as it is to detect a happy dog. Let’s compare these animals:

HUMAN        DOG         COW           BIRD         LIZARD         WORM

This list is roughly ordered by how similar the animal is to humans in terms of intelligent body language. Dogs share a great deal of the body language that we associate with emotions. Dogs are especially good at expressing shame. (Do cats feel less shame than dogs? They don’t appear to show it as much as dogs, but we shouldn’t immediately jump to conclusions because we can’t see it in terms of familiar body language signals).

3009107.largeOn the surface, a cow may appear placid and relaxed…in that characteristic bovine way. But an experienced veterinarian or rancher can easily detect a stressed-out cow. As we move farther away from humans in this list of animals, the body language cues become harder and harder to detect. In the simpler animals, do we even know if these emotions exist at all? Again…that may be the wrong question to ask.

happy-worm

It would be wrong of me to assume that there are no emotional signals being generated by an insect, just because I can’t see them.

ants communicating via touch

Ant body language is just not something I am familiar with. The more foreign the animal, the more difficult it is for us humans to attribute “intelligence” or “emotion” to it.

Zoosemiotics may help to disambiguate these problematic definitions, and place the gaze where it may be more productive.

I would conclude that we need to continue to remove those anthropocentric biases that have gotten in the way of science throughout our history.

8212f1d8d4ab1d159c6e0837439524c3When we have adequately removed those biases regarding intelligence and emotion, we may more easily see the rich signaling that goes on between all animals on this planet. We will begin to see more clearly a kind of super-intelligence that permeates the biosphere. Our paltry words will step aside to reveal a bigger vista.

Dinosaur_615I have never taken LSD or ayahuasca, but I’ve heard from those that have that they have seen this super-intelligence. Perhaps these chemicals are one way of removing that bias, and taking a peek at that which binds us with all of nature.

But short of using chemicals….I guess some good unbiased science, an open mind, and a lot of compassion for our non-human friends can help us see farther – to see beyond our own body language.

Virtual Reality is Biologically Inevitable

Musicophilia_front_coverI am reading Oliver Sacks’ Musicopholia. He discusses several patients he has seen who suddenly become obsessed with music, or suddenly start hearing music in their head as a result of a brain injury. These are called “musical hallucinations”. He describes temporal-lobe epilepsy patients who have musical hallucinations just before a seizure. Fascinating stuff.

It reminds me of how our brains are in the habit of “playing” things – not just music, but scenarios, stories, past experiences, and experiences we wish we could have.

virtual_reality_helmetThe term “Virtual Reality” is usually accompanied by high-tech images of people with clunky things stuck on their heads.

But there is another way to understand virtual reality: it is an inevitable fact of biological evolution on Earth.

What? Virtual reality is more than just a technological innovation?  A gimmick? Yes. Absolutely. Virtual reality has its roots in the early formation of life on Planet Earth.

Years ago I read Daniel Dennett’s book Kinds of Minds. I remember looking at diagrams of how animals form internal representations of the external world.

089a

Dennett shows how the evolution of nervous systems gave way to brains and ultimately consciousness. And along the journey, internal representations became increasingly sophisticated and better at predicting the outcomes of potential actions.

Throughout the history of biological evolution, animal brains became increasingly complex and adaptive to the complexity of the environment (which itself became more complex because of the brains of other animals…and so on). From genetic adaptation … to consciousness: all animals build internal representations of the word in order to function within it. This might be considered the very basis – the original impetus – of intelligence.

images

There was an amazing discovery that I leaned about from reading On Intelligence: The neocortex at the top of the human brain sends information DOWN, as well as information being sent UP from the senses. In other words, while the senses are passing information from the ears, eyes, fingers, etc. up to the higher levels of the brain, the higher levels of the brain are also sending down “expectations” of what might be coming up.

To put it another way. The brain is constantly projecting an internal virtual reality and checking to see if this matches up with the signals coming in.

Picture1

If everything matches up, and if the colliding signals are in agreement, the brain interprets this to be “business as usual”. But if any differences are detected, then various neural networks kick into action, and attempt to process this difference. This may seem strange if you are used to thinking of the brain as a passive recipient of information from the senses.

But consider this: it would be very inefficient to try to soak up the entire gamut of high-resolution reality as it floods-in through the senses. Who has time for that? It is more efficient to run an internal virtual reality based on expectation in parallel with actual reality and only jump into action with something doesn’t match up. Apparently, the six layers of neocortex described in the book are in the business of doing just that. And the higher the cortical layer, the more abstract the processing.

Think about it: the higher-region of the brain is projecting as much virtual reality down toward the senses as the senses are sending signals up to the higher regions of the brain.

Thus: the brain is a virtual reality engine.

And the collective of all animal brains have a major impact on the environment. It’s a feedback loop. The biosphere is a gigantic feedback loop of internal representations, which constantly change reality and subsequently adapt to it.

This massive cross-projection of multiple virtual realities within the biosphere started even before there were animals with brains. One could say that biological evolution has always been in the business of mapping reality into various internal representations – stored in the genes of organisms – as well as in the extended phenotypes that adorn the environment. Human brains are just the most sophisticated version of the self-reflection that emerges from the fabric of the biosphere.

Screen Shot 2015-04-02 at 12.21.09 PMSo, consider the musical hallucinations that Oliver Sacks describes. Consider the unfortunate individuals who fall victim to schizophrenia. Consider the anxiety of playing out the evening’s events before your first date. These are internal virtual realities gone awry.

 

Sony-virtual-reality-headsetWhen I see images of people with big-ass chunks of technology stuck on their faces, I wonder whats going on in the scope of the big picture – in terms of the evolution of brains. Is our internal virtual reality not sufficient enough? Is technological virtual reality just a continuation of the human instinct to tell stories, paint pictures, make movies, and games?

Perhaps the evolution of virtual reality is just that: a continuation of something that we have been doing since we became human: extending our inner-virtual reality with more and more artificial layers on the outside.

Humans are not content with plain old “natural” virtual reality. We have to take it to extremes. And given that we are not content with reality as it is (both internal and external), I guess it’s inevitable.