We are always dreaming

Take a large pot of water and leave it out in sub-freezing temperatures for a few days. It will turn into a block of ice.

Now take that pot of water and put it on the stove and crank up the flame. Before long, it will start to boil.

Let it cool for a few hours at room temperature and it will resume its familiar liquid form.

If you drop a live fish into liquid water it will swim around and do fishy things.

Things would not go so well if you drop a fish onto a block of ice. Fish are not good skaters.

And if you drop a fish into boiling water…well, the fish will not be very happy.

Think about these states of water as metaphors for how your brain works. A block of ice is a dead brain. A pot of boiling water is a brain having a seizure. Water at room temperature is a normal brain.

The fish represents consciousness.

………………….

Liquid brain

There is a constant low level of electrical activity among neurons (like water molecules bouncing off of each other, doing the Brownian dance). Intrinsic random neuronal activity is the norm – it keeps a low fire burning all the time. In a sense, the brain has a pilot light.

A bit of randomness is helpful for keeping the mind creative and open to new ways of thinking – consciously and unconsciously. Like the ever-present force of natural selection that curates random mutation in genetic evolution, there are dynamical structures in the brain that permit more meaningful, useful energy to percolate from the random background.

Command and control

The majority of the brain’s activity is unconscious. At every second of your life a vast army of dynamical structures are buzzing around, managing the low-level mechanisms of multi-sensory input, attention, memory, and intent. These structures are vast, short-lived, and small. And they are entirely inaccessible to the conscious mind.

The command and control area of the brain is located at the front-top of the neocortex. The signature of consciousness is a network of relatively stable, large-scale dynamical structures, with fractal fingers branching down into the vast network of unconscious structures. The buzz of the unconscious mind percolates and fuses into something usable to the conscious mind. It offers up to the conscious mind a set of data-compressed packets. When the command and control center relaxes, we experience wandering thoughts. And those thoughts wander because the brain’s pilot light provides constant movement.

These ideas are derived from Dehaene’s Consciousness and the Brain.

Surrender to dreaming

When we start falling asleep, the command and control center begins to lose its grip. The backdrop of randomness sometimes makes its way past the fuzzy boundary of our consciousness – creating a half-dreaming state. Eventually, when consciousness loses out, all that is left is this random, low-level buzz of neural activity.

But dreaming is obviously not totally random. Recent memories have an effect…and of course so do old but powerful memories. The physical structure of the brain does not permit total randomness to stay random for very long. Original randomness is immediately filtered by the innate structure of the brain. And that structure is permeated with the leftovers from a lifetime of experience.

So here’s a takeaway from recent neuroscience, inspired by the findings of Stanislas Dehaene: WE ARE ALWAYS DREAMING. That is because the unconscious brain is continually in flux. What we recognize as dreaming is merely the result of lifting the constraints imposed by the conscious mind – revealing an ocean – flowing in many directions.

The unconscious brain can contribute to a more creative life. And a good night’s sleep keeps the conscious mind out of the way while the stuff gathered in wakefulness is given a chance to float around in the unconscious ocean. While in the ocean, it either dissolves away or settles into functional memory – kicking out an occasional dream in the process.

 

Hummingbird on a wire

hummingbirdI looked out the window this morning and I thought I saw a speck on the window pane. Upon closer look, I realized that the speck was a hummingbird perched high on a wire spanning two telephone poles.

I became the bird’s dedicated audience for about three minutes. I watched closely as the tiny bee-like creature surveyed the surroundings from its high vantage point.

What was the bird thinking? And can I use the word “thinking” to describe the activities in this bird’s mind? For that matter, does the bird have a mind? It certainly has a brain. And that brain has a special feature: its hippocampus is five times larger than that of song birds, seabirds, and woodpeckers. According to this article, “The birds can remember where every flower in their territory is and how long it takes to refill with nectar after they have fed.”

Thinking is a by-product of an animal body, which is a member of a species with specific needs, skills, and adaptations to a particular environment.

Fear (and Love) of Heights

If I were perched on a wire as high as the hummingbird, I would be terrified: “Get me down from here!” On the other hand, a bird feels perfectly at home at such high altitudes.

Consider a hawk sliding across the horizon above a vast valley. Looking down from its vantage point, the hawk may experience inner-peace – possibly moments of boredom (if you will permit me to apply these human-oriented emotion labels to a hawk’s subjective experience). A human hang-glider would experience exhilaration, and moments of fear. And maybe…moments of that same inner-peace that the hawk experiences.

Above image from: https://www.pinterest.com/explore/hang-gliding/

When I have joyful flying dreams, my brain is not triggering the fear network. I am experiencing a peaceful freedom from gravity – with touches of exhilaration.

I wish I could become as light and deft (and fearless) as a bird, and watch the world from the tallest treetops in my neighborhood.

Science writers who say machines have feelings…lack intelligence.

I saw an article by Peter Dockrill with the headline, “Artificial intelligence should be protected by human rights, says Oxford mathematician”.

The subtitle is: “Machines Have Feelings Too”.

Regarding the potential dangers of robots and computers, Peter asks: “But do robots need protection from us too?” Peter is apparently a “science and humor writer”. I think he should stick with just one genre.

Just more click-bait.

There are too many articles on the internet with headlines like this. They are usually covered with obnoxious, eye-jabbing ads, flitting in front of my face like giant colorful moths. It’s a carnival – through and through.

I could easily include any number of articles about the “terrifying” future of AI, “emotional machines”, “robot ethics”, and other cartoon-like dilutions of otherwise thoughtful well-crafted science fiction.

Good science fiction is better than bad science journalism.

Screen Shot 2016-07-09 at 10.30.04 PM

Here’s Ben Goldacre:

Screen Shot 2016-06-24 at 9.30.15 PM

Now, back to this silly subject of machines having feelings:

Some of my previous articles express my thoughts on the future of AI, such as:

No Rafi. The Brain is not a Computer

The Singularity is Just One in a Series

Why Nick Bostrom is Wrong About the Dangers of Artificial Intelligence

Intelligence is NOT One-Dimensional

homunculusbI think we should be working to fix our own emotional mess, instead of trying to make vague, naive predictions about machines having feelings. Machines will – eventually – have something analogous to animal motivation and human states of mind, but by then the human world will look so different that the current conversation will be laughable.

Right now, I am in favor of keeping the “feelings” on the human side of the equation.

We’re still too emotionally messed up to be worrying about how to tend to our machines’ feelings. Let’s fix our own feelings first before giving them to our machines. We still have that choice.

And now, more stupidity from Meghan Neal:

“Computers are already faster than us, more efficient, and can do our jobs better.”

Wow Meghan, you sure do like computers, don’t you?

I personally have more hope, respect, and optimism for our species.

In this article, Meghan makes sweeping statements about machines with feelings, including how “feeling” computers are being used to improve education.

The “feeling” robots she is referring to are machines with a gimmick – they are brain-dead automatons with faces attached to them. Many savvy futurists suggest that true AI will not result from humans trying to make machines act like humans.  That’s anthropomorphism. Programming pre-defined body language in an unthinking robot makes for interesting and insightful experimentation in human-machine interaction. But please! Don’t tell me that these machines have “feelings”.

Screen Shot 2016-07-09 at 3.44.18 PMThis article says: “When Nao is sad, he hunches his shoulders forward and looks down. When he’s happy, he raises his arms, angling for a hug. When frightened, Nao cowers, and he stays like that until he is soothed with some gentle strokes on his head.”

 

Pardon me while I projectile vomit.

Any time you are trying to compare human intelligence with computers, consider what Marvin once said:

Screen Shot 2016-06-24 at 10.38.04 PM

No Rafi. The brain is not a computer.

Rafi Letzter wrote an article called “If you think your brain is more than a computer, you must accept this fringe idea in physics“.

Screen Shot 2016-06-11 at 12.50.53 PM

The article states the view of computer scientist Scott Aaronson: “…because the brain exists inside the universe, and because computers can simulate the entire universe given enough power, your entire brain can be simulated in a computer.”

Who the fuck said computers can simulate the entire universe?

That is a huge assumption. It’s also wrong.

We need to always look close at the assumptions that people use to build theories. If it can be proven that computers can simulate the entire universe, then this theory will be slightly easier to swallow.

By the way, a computer cannot simulate the entire universe because it would have to simulate itself simulating itself simulating itself.

The human brain is capable of computation, and that’s why humans are able to invent computers.

The very question as to whether the brain “is a computer” is wrong-headed. Does the brain use computation? Of course it does (among other things). Is the brain a computer? Of course it isn’t.

The Miracle of My Hippocampus – and other Situated Mental Organs

I’m not very good at organizing.

pilesThe pile of papers, files, receipts, and other stuff and shit accumulating on my desk at home has grown to huge proportions. So today I decided to put it all into several boxes and bring it to the co-working space – where I could spend the afternoon going through it and pulling the items apart. I’m in the middle of doing that now. Here’s a picture of my progress. I’m feeling fairly productive, actually.

10457290-Six-different-piles-of-various-types-of-nuts-used-in-the-making-of-mixed-nuts--Stock-PhotoSome items go into the trash bin; some go to recycling; most of them get separated into piles where they will be stashed away into a file cabinet after I get home. At the moment, I have a substantial number of mini-piles. These accumulate as I sift through the boxes and decide where to put the items.

Here’s the amazing thing: when I pull an item out of the box, say, a bill from Verizon, I am supposed to put that bill onto the Verizon pile, along with the other Verizon bills that I have pulled out. When this happens, my eye and mind automatically gravitate towards the area on the table where I have been putting the Verizon bills. I’m not entirely conscious of this gravitation to that area.

Gravity Fields in my Brain

What causes this gravitation? What is happening in my brain that causes me to look over to that area of the table? It seems that my brain is building a spatial map of categories for the various things I’m pulling out of the box. I am not aware of it, and this is amazing to me – I just instinctively look over to the area on the table with the pile of Verizon bills, and…et voilà – there it is.

Other things happen too. As this map takes shape in my mind (and on the table), priorities line up in my subconscious. New connections get made and old connects get revived. Rummaging through this box has a therapeutic effect.

The fact that my eye and mind know where to look on the table is really not such a miracle, actually. It’s just my brain doing its job. The brain has many maps – spatial, temporal, etc. – that help connect and organize domains of information. One part of the brain – the hippocampus – is associated with spatial memory.

hippocampal-neurons_0-1

User Interface Design, The Brain, Space, and Time

I could easily collect numerous examples of software user interfaces that do a poor job of tapping the innate power of our spatial brains. These problematic user interfaces invoke the classic bouts of confusion, frustration, undiscoverability, and steep learning curves that we bitch about when comparing software interfaces.

This is why I am a strong proponent of Body Language (see my article about body language in web site design) as a paradigm for user interaction design. Similar to the body language that we produce naturally when we are communicating face-to-face, user interfaces should be designed with the understanding that information is communicated in space and in time (situated in the world). There is great benefit for designers to have some understanding of this aspect of natural language.

Okay, back to my pile of papers: I am fascinated with my unconscious ability to locate these piles as I sift through my stuff. It reminds me of why I like to use the fingers of my hand to “store” a handful of information pieces. I can recall these items later once they have been stored in my fingers (the thumb is usually saved for the most important item).

Body Maps, Brain, and Memory

inbodymaps

Screen Shot 2016-02-07 at 9.03.46 PMLast night I was walking with my friend Eddie (a fellow graduate of the MIT Media Lab, where the late Marvin Minsky taught). Eddie told me that he once heard Marvin telling people how he liked to remember the topics of an upcoming lecture: he would place the various topics onto his body parts.

…similar to the way the ancient Greeks learned to remember stuff.

During the lecture, Marvin would shift his focus to his left shoulder, his hand, his right index finger, etc., in order to recall various topics or concepts. Marvin was tapping the innate spatial organs in his brain to remember the key topics in his lecture.

My Extended BodyMap

18lta79g5tsytjpgMy body. My home town. My bed. My shoes. My wife. My community. The piles in my home office. These things in my life all occupy a place in the world. And these places are mapped in my brain to events that have happened in the past – or that happen on a regular basis. My brain is the product of countless generations of Darwinian iteration over billions of years.

All of this happened in space and time – in ecologies, animal communities, among collaborative workspaces.

Even the things that have no implicit place and time (as the many virtualized aspects of our lives on the internet)… even these things occupy a place and time in my mind.

Intelligence has a body. Information is situated.

Hail to Thee Oh Hippocampus. And all the venerated bodymaps. For you keep our flitting minds tethered to the world.

You offer guidance to bewildered designers – who seek the way – the way that has been forged over billions of years of intertwingled DNA formation…resulting in our spatially and temporally-situated brains.

treblebird

bodymapping.com.au

We must not let the no-place, no-time, any-place, any-time quality of the internet deplete us of our natural spacetime mapping abilities. In the future, this might be seen as one of the greatest challenges of our current digital age.

Hippocampus_and_seahorse_cropped

Questioning the Answer

Question-mark-5http://www.topchair.cn/en/Question-mark-chair.htm

Have you ever found yourself searching and searching and searching for an answer to a question? You explore all perspecives. You look at it from many point of view. Time drags on – you are still searching – climbing into your mind’s attic for new insights in hopes to find it.

You pause and ask yourself: Uh, what exactly was the question? Now you try to articulate the question, and then you realize that you never really knew what the question was. So then you try to come up with the right question.

Having shifted gears, it doesn’t take you long to find it – it pops out crystal clear. And just as soon as the question comes, the answer comes along right after it. You find yourself in a new place of understanding, and you realize: everything happened in exactly the right order.

Screen Shot 2015-12-26 at 6.08.43 PM

—–