How the Future Changes the Present (Terrence Deacon’s Incomplete Nature)

DIn his book, Incomplete Nature – How Mind Emerged from Matter, Terrence Deacon tackles some of the deepest and gnarliest philosophical questions about life and mind, and how they emerge from the physical world despite the fact that the laws of physics can only explain lifeless, mechanical processes. Regarding the second law of thermodynamics, which states that everything is in an eternal state of eventual decay, Deacon says this:

220px-TerryDeacon“There is the dead, pointless, uncaring world and its rules, and the living, striving, feeling world and its rules, and the two seem to be working in quite contradictory ways. Because the spontaneous order generation that is so characteristic of life and mind runs counter to this otherwise exceptionless current of nature, it demands that we take seriously the possibility that our usual forms of explanation might be inadequate. When unrealized future possibilities appear to be the organizers of antecedent processes that tend to bring them into existence, it forces us to look more deeply into the ways we conceive of causality and worry that we might be missing something important.”

I am in the process of re-reading the book, which is fat and dense.

b

Deacon makes little attempt to help the reader by phrasing his sentences and paragraphs for easy digestion. Subsections are rare, and I feel like I’m often wading in a vast ocean without a view of an outcropping to pause and catch my breath. I beg for a period, perchance a comma. But despite the relentless texture of the writing, what Deacon has to say is inspiring…almost breathtaking. Actually, the breath-taking happens after I allow Deacon’s ideas to percolate in my mind during a short walk – which I find necessary for getting the depleted oxygen back into my brain.

…which reminds me of a core concept of the book. Billions of years of evolution have gone into the making of this unlikely spacetime dynamical event, which is me: a fully conscious human who happens to be writing words for you to read at some point in the future. The fact that I can choose to go for a walk for mental and physical health, and maintain my equilibrium (on many levels of consciousness, mostly un), is nothing short of a miracle. This is especially true when you consider the general trajectory of atoms in the universe.

31d377bBut in fact it is not a miracle. It can be explained with a systems-attitude overlaid on top of physics that includes emergence. “Emergence” is so wonderfully explained by Daniel Dennett in his descriptions of skyhooks and cranes. Here’s my take on the topic: when a higher level of structure emerges in the world, it reaches down to manipulate the lower levels that brought it into existence – it regulates and modulates those lower levels for its own survival. Then another level of emergence comes into being, and begins to regulate and modulate the previous structures. This upward cascading of order – this ever-complexifying hierarchy of constraints – is particular to life and mind, and it runs counter to the entropy that is the general rule of the universe. This is sometimes referred to as negentropy.

fdd042bb5ac4e50236974f747f0fdb8cI had previously struggled to understand the “incompleteness” aspect of Deacon’s thesis. In the first part of the book, he spends a lot of time re-stating the notion of things that “aren’t there” or that exist “for the sake of something missing”, after only briefly defining this concept up-front. In my first reading I had started out with a limp. Perhaps some training wheels with familiar language would have helped, as these are new and subtle ideas.

This is not unlike a small criticism from Daniel Dennett, in a book review. Overall though, Dennett’s review is very positive. In fact, Dennett says the book has him re-examining his fundamental working assumptions. When something rocks Daniel Dennett’s world, you stop and take notice.

The Future Does Change the Present

illusionLiving things have inner representations of the world they find themselves in – that’s part of the holographic picture of life. For us humans, these representations are not just in our brains; they are infused in our technology – distributed throughout our extended phenotypes. Organisms with minds not only put a lot of effort in trying to predict the future (which is necessary for survival), but they act in accordance to those predictions.

This has the effect of creating alternate futures – of changing the course of events – based on something represented in the mind of the organism – represented but not actually “there” (though it could be there in the future). I believe this is what Deacon means by incompleteness, things that are missing, or, in his own words: “absential features“.

RV-AE885_BRAIN2_DV_20111111015014According to Raymond Tallis in a Wall Street Journal book review, An absential is a phenomenon “whose existence is determined with respect to an . . . absence.” This sounds somewhat opaque but captures something essential to mind. In the push-pull universe of mechanical causation, only that which is present shapes the course of events. In our lives, by contrast, we are always taking account of things that are no longer present or not yet present or that may never come to pass. Thus “absentials” include our beliefs, the norms to which we subscribe and those great silos of possibility such as “tomorrow” and “next year.”

Screen Shot 2015-07-25 at 9.30.00 PMAlan Kay is once said, “The best way to predict the future is to invent it“. This is not just good advice for entrepreneurs; it might also be the motto for all living things. How else can we explain the fact that life on Earth has continued to exist for billions of years, with robust self-similar structures that persist for several millions of years – gradually changing, only to become better at predicting the future.

Why do we not expect every living thing to quickly dissolve into a gas, or at least some entropic state of uselessness? This is what classical physics would predict for such a rare, unlikely, and delicate assemblage of molecules. The answer is that living things have their futures infused into their DNA, their minds, and their societies. We fight the force of entropy, and we succeed.

For the most part.

Physics does not (at least not yet) adequately explain how the future effects the present. For this reason, Deacon is helping to build the foundations for a new kind of physics (or perhaps a new kind of meta-physics), which includes…

you, me, our consciousness, and everything that has meaning.

Quantum Physics Has a Language Problem

31jk3zyLsiL._UX250_I have become interested in theories of mind and all the new thinking at the intersection of physics and consciousness. So when I set out to read The Self-Aware Universe by Amit Goswami, I hoped to get a better sense of how quantum physics relates to mind.

Didn’t happen.

Screen Shot 2015-05-24 at 1.00.25 AMI also didn’t get any major insights about “action at a distance“. And most of all, I did not get any deeper insights on the idea that the act of observation can change the physical world. I’ve known about quantum mechanics for a while – enough to have a casual conversation over beer – or more likely – over a joint. But I expected that Goswami would help me get to the next level of understanding. I read the words, I followed the logic…

…but nothing ever got much farther than a few centimeters into my brain. There was no gut feeling – no somatic resolution.

imagesNow, to be sure, I wasn’t expecting epiphanies to come tumbling out. After all, Richard Feynman famously said, “If you think you understand quantum mechanics, you don’t understand quantum mechanics.”

So, I was appropriately prepared for the difficulty of the subject matter.

What the Hell is a “Quantum Object” Anyway?

Sean Carroll says that physical theories:

“…aren’t supposed to have ambiguities … the very first thing we ask about them is that they be clearly defined. Quantum mechanics, despite all its undeniable successes, isn’t there yet.”

The main problem with explanations of quantum physics is the choice of words.

The terms “observation”, and “measurement” have particular meanings in the physicist’s lab, where a scientist might be trying to gather data on the behavior of a single photon.

Image1

Truly not something that most of us experience in daily life. Even the sight of a faint star in the night sky involves a hell of a lot of photons. And one second of this experience is actually a really long time.

But…a single photon?

I wonder if the scientist in the lab actually “experiences” a photon anyway. How does one “experience” a photon? And what does it mean to “measure” or “observe” something as fleeting and tiny as a subatomic particle?

Sean Carroll again:

“There is no consensus within the physics community about what really constitutes an observation (or “measurement”) in quantum mechanics, nor on what happens when an observation occurs.”

Another problematic term is “quantum object”. The word “object” is very familiar in classical physics. But it invites contradiction and cognitive dissonance when applied to phenomena on the quantum level.

niels-bohr-model-of-the-hydrogen-atomNiels Bohr said: “We must be clear that when it comes to atoms, language can be used only as in poetry. The poet, too, is not nearly so concerned with describing facts as with creating images and establishing mental connections.”

While reading explanations on quantum physics, I become optimistic: I feel as if I am about to get a picture of why certain puzzling phenomena are true. Authors use familiar narratives and metaphors that I have direct experience with, but what they are illustrating are observations in a physics lab where fleeting subatomic particles exhibit paradoxical behaviors. These carefully-orchestrated observations that only happen in expensive laboratories are hardly the stuff of everyday experience.

And then they start talking about cats in boxes – right after telling us that cats and boxes are VERY DIFFERENT than subatomic particles.

Thanks!

By the way…apparently, it IS possible to experience the effects of quantum physics in your own home:

Labeler Setup2

I just love the fact that styrofoam cups were used in this experiment.

Can Quantum Physics Ever Really Be “Explained?”

Because our sense organs and brains are optimized to deal with things on a human scale, it’s difficult for us to think about things as small as atoms (where quantum physics really matters) or as big as galaxies (where relativity really matters).

As I set out to write this article, I did some searching and noticed right away that a lot of people have pointed out that quantum physics has a language problem. And so here is where I bow out, and let the real experts speak…

Is there a Language Problem with Quantum Physics?

The Copenhagen Interpretation 

So, You’re Not a Physicist…

Quantum Physics and Human Language

What If There’s a Way to Explain Quantum Physics Without the Probabilistic Weirdness?

Quantum Mechanics Made Easy

Maybe classical clockwork can explain quantum weirdness